Main Content

findPlaceholderLayers

Find placeholder layers in network architecture imported from Keras or ONNX

Description

example

placeholderLayers = findPlaceholderLayers(importedLayers) returns all placeholder layers that exist in the network architecture importedLayers imported by the importKerasLayers or importONNXLayers functions. Placeholder layers are the layers that these functions insert in place of layers that are not supported by Deep Learning Toolbox™.

To use with an imported network, this function requires either the Deep Learning Toolbox Converter for TensorFlow™ Models support package or the Deep Learning Toolbox Converter for ONNX™ Model Format support package.

[placeholderLayers,indices] = findPlaceholderLayers(importedLayers) also returns the indices of the placeholder layers.

Examples

collapse all

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)
Warning: 'importKerasLayers' is not recommended and will be removed in a future release. To import TensorFlow-Keras models, save using the SavedModel format and use importNetworkFromTensorFlow function.
Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.
lgraph = 
  LayerGraph with properties:

     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}
         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers in the Keras network.

lgraph.Layers
ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'gaussian_noise_1'                   GaussianNoise           Placeholder for 'GaussianNoise' Keras layer
     7   'gaussian_noise_2'                   GaussianNoise           Placeholder for 'GaussianNoise' Keras layer
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

Find the placeholder layers using findPlaceholderLayers. The output argument contains the two placeholder layers that importKerasLayers inserted in place of the Gaussian noise layers of the Keras network.

placeholders = findPlaceholderLayers(lgraph)
placeholders = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   GaussianNoise   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   GaussianNoise   Placeholder for 'GaussianNoise' Keras layer

Specify a name for each placeholder layer.

gaussian1 = placeholders(1);
gaussian2 = placeholders(2);

Display the configuration of each placeholder layer.

gaussian1.KerasConfiguration
ans = struct with fields:
        trainable: 1
             name: 'gaussian_noise_1'
           stddev: 1.5000
    inbound_nodes: {{1x1 cell}}

gaussian2.KerasConfiguration
ans = struct with fields:
        trainable: 1
             name: 'gaussian_noise_2'
           stddev: 0.7000
    inbound_nodes: {{1x1 cell}}

This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5' classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);
Warning: 'importKerasLayers' is not recommended and will be removed in a future release. To import TensorFlow-Keras models, save using the SavedModel format and use importNetworkFromTensorFlow function.
Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The importKerasLayers function displays a warning and replaces the unsupported layers with placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")

Figure contains an axes object. The axes object with title Imported Network contains an object of type graphplot.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)
placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   GaussianNoise   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   GaussianNoise   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration
ans = struct with fields:
        trainable: 1
             name: 'gaussian_noise_1'
           stddev: 1.5000
    inbound_nodes: {{1x1 cell}}

ans = struct with fields:
        trainable: 1
             name: 'gaussian_noise_2'
           stddev: 0.7000
    inbound_nodes: {{1x1 cell}}

Create two Gaussian noise layers with the same configurations as the imported Keras layers using the helper gaussianNoiseLayer function.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

Figure contains an axes object. The axes object with title Network with Replaced Layers contains an object of type graphplot.

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before prediction. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers
ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the classification layer and check the Classes property.

cLayer = lgraph.Layers(end)
cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)
cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
    ClassWeights: 'none'
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that is ready to use for prediction.

net = assembleNetwork(lgraph)
net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments

collapse all

Network architecture imported from Keras or ONNX, specified as a Layer array or LayerGraph object.

Output Arguments

collapse all

All placeholder layers in the network architecture, returned as an array of PlaceholderLayer objects.

Indices of placeholder layers, returned as a vector.

  • If importedLayers is a layer array, then indices are the indices of the placeholder layers in importedLayers.

  • If importedLayers is a LayerGraph object, then indices are the indices of the placeholder layers in importedLayers.Layers.

If you remove a layer from or add a layer to a Layer array or LayerGraph object, then the indices of the other layers in the object can change. You must use findPlaceholderLayers again to find the updated indices of the rest of the placeholder layers.

Tips

  • If you have installed Deep Learning Toolbox Converter for TensorFlow Models and findPlaceholderLayers is unable to find placeholder layers created when the ONNX network is imported, then try updating the Deep Learning Toolbox Converter for TensorFlow Models support package in the Add-On Explorer.

Version History

Introduced in R2017b