Generate Digit Images Using Variational Autoencoder on Intel CPUs
This example shows how to generate a MEX function for a trained variational autoencoder (VAE) network that runs on Intel® CPUs. The example illustrates:
This example uses a pretrained decoder network based on the Train Variational Autoencoder (VAE) to Generate Images example from the Deep Learning Toolbox™. For more information, see Train Variational Autoencoder (VAE) to Generate Images (Deep Learning Toolbox).
Third-Party Prerequisites
Required
Intel processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2) instructions.
Optional
For non-MEX builds such as static, dynamic libraries or executables, this example has the following additional requirements.
Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
For information on the supported versions of the compilers and libraries, see Prerequisites for Deep Learning with MATLAB Coder
This example is not supported in MATLAB® Online.
Pretrained Variational Autoencoder Network
Autoencoders have two parts: the encoder and the decoder. The encoder takes an image input and outputs a compressed representation (the encoding), which is a vector of size latent_dim
, equal to 20 in this example. The decoder takes the compressed representation, decodes it, and recreates the original image.
VAEs differ from regular autoencoders in that they do not use the encoding-decoding process to reconstruct an input. Instead, they impose a probability distribution on the latent space, and learn the distribution so that the distribution of outputs from the decoder matches that of the observed data. Then, they sample from this distribution to generate new data.
This example uses the decoder network trained in the Train Variational Autoencoder (VAE) to Generate Images example. To train the network yourself, see Train Variational Autoencoder (VAE) to Generate Images (Deep Learning Toolbox).
The generateVAE Entry-Point Function
The generateVAE
entry-point function loads the dlnetwork
object from the trainedDecoderVAENet
MAT-file into a persistent variable and reuses the persistent object for subsequent prediction calls. It initializes a dlarray
object containing 25 randomly generated encodings, passes them through the decoder network, and extracts the numeric data of the generated image from the deep learning array object.
type('generateVAE.m')
function generatedImage = generateVAE(decoderNetFileName,latentDim,Environment) %#codegen % Copyright 2020-2021 The MathWorks, Inc. persistent decoderNet; if isempty(decoderNet) decoderNet = coder.loadDeepLearningNetwork(decoderNetFileName); end % Generate random noise randomNoise = dlarray(randn(1,1,latentDim,25,'single'),'SSCB'); if coder.target('MATLAB') && strcmp(Environment,'gpu') randomNoise = gpuArray(randomNoise); end % Generate new image from noise generatedImage = sigmoid(predict(decoderNet,randomNoise)); % Extract numeric data from dlarray generatedImage = extractdata(generatedImage); end
Evaluate the Entry-Point Function
Evaluate the generateVAE
entry-point function to generate digit images and plot the results.
latentDim = 20; matfile = 'trainedDecoderVAENet.mat'; Env = ''; figure() title("Generated samples of digits - MATLAB") generatedImageML = generateVAE(matfile, latentDim, Env); imshow(imtile(generatedImageML, "ThumbnailSize", [100,100]))
Generate MEX Function
To generate a MEX function for the generateVAE
entry-point function, create a code configuration object for a MEX target and set the target language to C++. Use the coder.DeepLearningConfig
function to create a MKL-DNN deep learning configuration object and assign it to the DeepLearningConfig
property of the code configuration object.
cfg = coder.config('mex'); cfg.TargetLang = 'C++'; cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn'); args = {coder.Constant(matfile), coder.Constant(latentDim), coder.Constant(Env)}; codegen -config cfg -args args generateVAE -report
Code generation successful: View report
Run the Generated MEX
Call the generated MEX and display the results.
figure() title("Generated samples of digits using MKL-DNN") generatedImage = generateVAE_mex(matfile, latentDim, Env); imshow(imtile(generatedImage, "ThumbnailSize", [100,100]))
The generateVAE
entry-point function initializes the dlarray
object with randomly generated encodings, passes them through the decoder network, and extracts the numeric data of the generated image from the deep learning array object. As a result, the image generated during MATLAB simulation is different from the image generated by the MEX function call.
See Also
coder.DeepLearningConfig
| codegen
| coder.config
| dlarray
(Deep Learning Toolbox) | dlnetwork
(Deep Learning Toolbox)
Related Examples
- Train Variational Autoencoder (VAE) to Generate Images (Deep Learning Toolbox)