photo

Alex Sha


Last seen: Today 2019 年からアクティブ

Followers: 1   Following: 0

統計

  • Knowledgeable Level 4
  • 12 Month Streak
  • Revival Level 3
  • First Answer

バッジを表示

Feeds

表示方法

回答済み
Non-linear Algebraic 36 equations unsloved
@MINATI PATRA please giving out the code you used, or the detail description of your 36 equations

5ヶ月 前 | 0

回答済み
problem in curve fitting using summation of sine functions
@nihal if don't mind fitting function other than summation of sine, much better result will be achieved. For phi_dot data: R...

7ヶ月 前 | 0

| 採用済み

回答済み
Exp Fit Error: Error using fit>iFit (line 340) NaN computed by model function, fitting cannot continue. Try using or tightening upper and lower bounds on coefficients.
There are two solutions: 1: Sum Squared Error (SSE): 0.0371625579290083 Root of Mean Square Error (RMSE): 0.0609611006536204 ...

7ヶ月 前 | 0

回答済み
Possibly spurious solutions - Matlab blocked with no answers
There is a approximate solution for original equations: p2: 35001350.3279785 p3: 35113789.3799513 u2: -8.90075607998193 u3: ...

8ヶ月 前 | 0

回答済み
Interpolation schemes that produce positive second derivatives of the interpolant
How about to replace interpolation with a fitting function, which ensure non-negative second derivatives: 1: For data: x = [...

8ヶ月 前 | 0

回答済み
How to find the equation of the data available of a graph?
Try the fitting function below: Sum Squared Error (SSE): 1.05153845767184 Root of Mean Square Error (RMSE): 0.17850714760936...

9ヶ月 前 | 0

| 採用済み

回答済み
can help me to found empirical equation for data L1 vs T1
How about the one below, much simple and works well: Sum Squared Error (SSE): 0.348116593172766 Root of Mean Square Error (R...

9ヶ月 前 | 2

| 採用済み

回答済み
can help me to found empirical equation for data L1 vs T1
It is not easy to find a function to describe the curve. Refer to the fitting function and result below: Sum Squared Error (S...

9ヶ月 前 | 1

回答済み
how to fit the coupled differential equations and get the coefficients?
Refer to the results below: Sum Squared Error (SSE): 46715596564.0427 Root of Mean Square Error (RMSE): 35062.1990798768 Corr...

11ヶ月 前 | 0

回答済み
Derivative not working plot
Unfortunately, the "exp2" fitting result below given by Matlab is not correctly. theFit = General model Exp2: theF...

11ヶ月 前 | 0

回答済み
curve fitting exponential function with two terms
If taking the fitting function as: y=a*exp(b*x) + c*exp(d*x); and also taking the data like below directly; x = [6500 6350 580...

11ヶ月 前 | 0

回答済み
Damped Oscillation Equation Fitting
if taking fitting function as: x=a*exp(-b*t)*sin(w*t+phi) for trial-1 Sum Squared Error (SSE): 9.1948847955911E-5 Root of Mea...

11ヶ月 前 | 0

回答済み
Fitting a model to my data using non linear least square fit method
The best solution: Root of Mean Square Error (RMSE): 0.0143800358786989 Correlation Coef. (R): 0.998885623657614 R-Square: 0....

約1年 前 | 0

回答済み
Fsolve don't work good with trigonometric
There are some solutions like below No. 1 2 3 4 5 xa1 0.835289443057692 1.97769580537186 0.119396464246135 0.813305799520437 0...

約1年 前 | 0

回答済み
fsolve result is not desirable even giving a close starting point
For Qingbin's equations, although it is a problem that has passed a long time, it is worth and interesting to have a try, there ...

約1年 前 | 0

回答済み
using lsqnonlin with multiple functions
@joshua payne refer to the results below Sum Squared Error (SSE): 0.377485784540046 Root of Mean Square Error (RMSE): 0.082102...

約1年 前 | 0

回答済み
Least squares linear regression with constraints
If using direct nonlinear fitting a1 59.737732722511 a2 2.72067588034148 a3 -0.192039313150924 Whi...

約1年 前 | 0

回答済み
How do I curve fit the data set
@Prajwal Magadi, one more function: Sum Squared Error (SSE): 75571.6557870726 Root of Mean Square Error (RMSE): 2.7490299341...

約1年 前 | 1

回答済み
fitting data with a combination of exponential and linear form ( a*exp(-x/b)+c*x+d )
If taking fitting function as "y=a*exp(-x/b)+c*x+d", the result will be: Sum Squared Error (SSE): 0.473516174967249 Root of Me...

1年以上 前 | 1

回答済み
Fitting multiple exponential function .
@Saroj Poudyal, the result you obtained is not the best one, refer to the global optimization solution below: Sum Squared Error...

1年以上 前 | 1

| 採用済み

回答済み
How to fit multiple gaussian in a curve ?
For the summation of 6 Gaussians function: Sum Squared Error (SSE): 2.61218021364296E-9 Root of Mean Square Error (RMSE): 4.49...

1年以上 前 | 0

回答済み
Curve fitting the data series
Refer to the results below, should be the unique global solution: Sum Squared Error (SSE): 0.0378758633912789 Root of Mean Squ...

1年以上 前 | 1

回答済み
Non-linear Multi-Variable Fitting
If possible, post out your data file please

2年弱 前 | 0

回答済み
Genetic Algorithm not returning best found solution
Taking my experience, GA is not an efficient and ideal global optimization algorithm, in lots of cases, GA like random reserach ...

2年弱 前 | 0

回答済み
Solving a system of Non-linear Equations with Complex numbers
There are much more solutions else: x1: 5000+3401.68025708298i x2: 5000-3401.68025708301i x3: -3.62536433474507+0i x1: 5...

2年弱 前 | 0

回答済み
How do I fit a regression equation to find coefficients and exponents?
Although the results may seem strange, mathematically speaking, the result below is the best one: Sum Squared Error (SSE): 87...

2年弱 前 | 0

回答済み
How to constraint the values of fitted parameters with lsqcurvefit?
hi, the result is good enough Sum Squared Error (SSE): 0.0105245967805521 Root of Mean Square Error (RMSE): 0.01938758511131 ...

2年以上 前 | 1

| 採用済み

回答済み
curve fitting tool custom equation
if taking only part of data, for example, from No. 105 to No. 300, then the result will looks good Sum Squared Error (SSE): 111...

2年以上 前 | 0

回答済み
The fsolve function fails to give me an answer for seven unknowns. What should I do?
Just doing some equivalent deformation (change division into multiplication), for example, form: f(5)=((x(1)^3)*(x(2))/(x(4)*...

2年以上 前 | 0

回答済み
How to curve fit an equation that gets values from another equation?
How about the results below: Residual Sum of Squares (RSS): 34.9122402573179 Root of Mean Square Error (RMSE): 0.9585109100402...

2年以上 前 | 0

さらに読み込む