Fit Normalised Gaussian to data

5 ビュー (過去 30 日間)
Dana Shoukroun
Dana Shoukroun 2021 年 4 月 27 日
編集済み: Matt J 2021 年 4 月 28 日
Hi,
I am trying to fit a nromalised Gaussian to my data, using
f(x) = a/sqrt(2pi*sigma^2) * exp (-(x-mu)^2/sigma^2)
However the fit function in matla does not accound for the sigma coefficient. Is there a way to modify the equation of the fit function? I tried to do a manual fit but it doesn't seem to work.
Thanks
  2 件のコメント
Alex Sha
Alex Sha 2021 年 4 月 28 日
Hi, post out your data please.
Matt J
Matt J 2021 年 4 月 28 日
I am trying to fit a nromalised Gaussian to my data, using
Shouldn't it be,
f(x) = a/sqrt(2pi*sigma^2) * exp (-0.5*(x-mu)^2/sigma^2)

サインインしてコメントする。

回答 (1 件)

Matt J
Matt J 2021 年 4 月 28 日
編集済み: Matt J 2021 年 4 月 28 日
You can use,
Example:
%% Synthetic data
fn=@(x,a,mu,sigma) a./sqrt(2*pi*sigma^2) .* exp (-(x(:)-mu).^2/2/sigma^2);
xdata=linspace(-3,9,20).';
ydata=fn(xdata,1,3,2)+0.006*randn(size(xdata));
%% Do the fit
ulb={0,[],[],[]};
[params,resnorm, residual,exitflag,output]=gaussfitn(xdata,ydata,[],ulb,ulb);
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
[A,mu,variance]=deal(params{2:4});
sigma=sqrt(variance);
a=A*sqrt(2*pi*variance);
%% Verify
xs=linspace(min(xdata),max(xdata),1000);
plot(xdata,ydata,'o',xs, fn(xs,a,mu,sigma));shg

カテゴリ

Help Center および File ExchangeLinear and Nonlinear Regression についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by