# How to guess initialization parameters for non-linear curve fitting with nlinfit?

17 ビュー (過去 30 日間)
Aindrila Saha 2020 年 2 月 26 日

I'm trying to use fit the data using this equation:
gaussFit = @(beta, stepFit) (beta(1).*(( ((stepFit./beta(2)).^4)/(1+((stepFit./beta(2)).^4))).*exp((-1).*(stepFit./beta(3))).*cos( (((2*pi).*stepFit)./beta(4)) + beta(5))));
initials = [-0.000006, 0.07, 0.06, 0.12, 0.15];
coeffs = lsqcurvefit(gaussFit, initials, stepFit, avgSPResp2);
(Data attached)
But it is giving me a staight line (which I'm guessing is because the initials are way off compared to the actual fit parameters. However, I've tried to estimate the parameters as much as possible looking at the data.
How do I address this issue?
Thanks!
##### 3 件のコメント表示非表示 2 件の古いコメント
Matt J 2020 年 2 月 28 日

I am also curious to know why you call your model function "gaussFit", when it does not look at all like a Gaussian model.

サインインしてコメントする。

### 採用された回答

Alex Sha 2020 年 2 月 27 日
Hi, Aindrila, guessing the initial start value is always a difficult task since the local optimization algorithms are adopted in most of curve fitting tool or commond,i.e. lsqcurvefit, “Luck + experience” is the current approach， or other way you may try is to use some packages which can performance global optimization calculation，refer the result below:
Root of Mean Square Error (RMSE): 0.0688616729634862
Sum of Squared Residual: 8.77731243616407
Correlation Coef. (R): 0.993270819763553
R-Square: 0.98658692139376
Determination Coef. (DC): 0.9865195863016
Chi-Square: -3.03449530351813
F-Statistic: 34240.770055333
Parameter Best Estimate
---------- -------------
beta1 308.324915419002
beta2 -0.233165245624372
beta3 0.0481053716827587
beta4 0.351440892233252
beta5 -0.634236150207208 ##### 1 件のコメント表示非表示 なし
Aindrila Saha 2020 年 2 月 28 日
Thank you. Which package did you use for the global optimization calculation?

サインインしてコメントする。

### その他の回答 (1 件)

Matt J 2020 年 2 月 28 日

Maybe by doing a Gaussian fit first, it would be easier to guess what the beta(i) parameters should be. You can do a Gaussian fit using gaussfitn (Download).
params=gaussfitn(stepFit,avgSPResp2);
[D,A,mu,sig]=deal(params{:})
z=@(x) D + A*exp( -0.5 * (x-mu).' * inv(sig) *(x-mu) );
hold on
xlims=[min(stepFit),max(stepFit)];
plot(stepFit,avgSPResp2,'ro')
fplot(z,xlims,'Color','k')
xlabel 'stepFit'
ylabel 'avgSPRResp2'
hold off サインインしてコメントする。

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!