How can I make Grad-cam of CNN net

4 ビュー (過去 30 日間)
Jaewon Kim
Jaewon Kim 2019 年 8 月 18 日
回答済み: Kenta 2020 年 7 月 11 日
I made CNN net based on 1-D data (1*204)
layers=[
imageInputLayer([1 204]);
convolution2dLayer([1 3],64,'Stride',1,'Padding',[0 1]);
convolution2dLayer([1 3],64,'Stride',1,'Padding',[0 1]);
batchNormalizationLayer
reluLayer();
maxPooling2dLayer([1 2],'Stride',[1 2]);
convolution2dLayer([1 3],128,'Stride',1,'Padding',[0 1]);
convolution2dLayer([1 3],128,'Stride',1,'Padding',[0 1]);
batchNormalizationLayer
reluLayer();
maxPooling2dLayer([1 2],'Stride',[1 2]);
convolution2dLayer([1 3],256,'Stride',1,'Padding',[0 1]);
convolution2dLayer([1 3],256,'Stride',1,'Padding',[0 1]);
batchNormalizationLayer
reluLayer();
maxPooling2dLayer([1 2],'Stride',[1 2]);
fullyConnectedLayer(400);
fullyConnectedLayer(400);
fullyConnectedLayer(4);
softmaxLayer();
classificationLayer();
];
I get a good CNN net, But I would like to which part of data is important to decide result.
I think It will be good way to use Grad-cam.
Many examples of Grad-cam are focused on Image. But my case is 1-D data not Image file..
Can you tell me which method will be good in my case?
Can I just use Grad-cam?,or more easy way to check which part is critical on result?

採用された回答

Kenta
Kenta 2020 年 7 月 11 日

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeConverters (High Power) についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by