Writing functions f(x,y)
143 ビュー (過去 30 日間)
古いコメントを表示
How do I correctly write f(x,y)=4(x-1)^2+3(y-2)^2+2(x-2)^2(y-3)^2 in MatLab code for a fiminsearch? I have been trying for days and I still cant get it right. Please help!!!
0 件のコメント
回答 (4 件)
Stephen23
2023 年 9 月 5 日
編集済み: Stephen23
2023 年 9 月 5 日
fh1 = @(x,y) 4*(x-1).^2 + 3*(y-2).^2 + 2*(x-2).^2.*(y-3).^2;
fh2 = @(v) fh1(v(1),v(2)); % function with one input
sol = fminsearch(fh2,[1,1])
val = fh2(sol)
An important part of any calculation is checking the result. Lets do that now:
fsurf(fh1)
hold on
plot3(sol(1),sol(2),val,'*r')
view(54,31)
Sam Chak
2023 年 9 月 5 日
Hi @Kaleina
For a static function, especially a function of two variables, this is how I systematically find the minimum point.
% STEP 1: Find the approximate location of the minimum point via contour plot
[X, Y] = meshgrid(-1:0.1:5); % adjust these until you see the basin
Z = staticfun(X, Y); % scroll to the bottom of the script
figure(1)
contour(X, Y, Z, 30), xline(1.5, '--'), yline(2.5, '--')
xlabel('x'), ylabel('y'), colorbar
% STEP 2: Find minimum of unconstrained function f(x, y)
funhd = @(v) staticfun(v(1), v(2)); % create a function handle to pass it to fminsearch
v0 = [1.5, 2.5]; % initial guess values based on the contour plot
solution = fminsearch(funhd, v0) % applying fminsearch
% STEP 3a: Plot the surface and the minimum point
figure(2)
surf(X, Y, Z), hold on
minValue = funhd(solution) % insert xsol & ysol into static funtion to find the min value
plot3(solution(1), solution(2), minValue, 'r.', 'MarkerSize', 25) % plot the red dot
% STEP 3b: rotate for better viewing
[az, el] = view;
az = az + 180;
view(az, el)
xlabel('x'), ylabel('y'), zlabel('f(x,y)')
% Part of STEP 1: to create a function for the surface f(x, y).
function fun = staticfun(x, y)
fun = 4*(x - 1).^2 + 3*(y - 2).^2 + 2*(x - 2).^2.*(y - 3).^2;
end
Alexander
2023 年 9 月 6 日
編集済み: Alexander
2023 年 9 月 6 日
The solutions above are very good and should be used to avoid loops. But anyway I post my little script here, because I think it is good for the understanding how a multible dimension function is built up.
X = 0:0.1:4; % Taylor it to your needs (precision, boundary)
Y = X; % Y = -1:0.1:3;
for(ix = 1:length(X));
for(iy = 1:length(Y))
Z(ix,iy) = 4*(X(ix) - 1).^2 + 3*(Y(iy) - 2).^2 + 2*(X(ix) - 2).^2.*(Y(iy) - 3).^2;
end
end
figure(1); contour(X,Y,Z);xlabel('X');ylabel('Y');
figure(2); mesh(X,Y,Z);xlabel('X');ylabel('Y');ylabel('Z');
[C, ind] = min(Z); [zMin, xInd] = min(C);
[C, ind] = min(Z'); [zMin, yInd] = min(C);
fprintf('Minimum of Z: %3.4f at pos. [X,Y] = [%i, %i], value = [%3.4f, %3.4f]\n',zMin,xInd,yInd,X(xInd),Y(yInd))
参考
カテゴリ
Help Center および File Exchange で Startup and Shutdown についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!