Curve fitting to data using fit

6 ビュー (過去 30 日間)
Editor
Editor 2022 年 10 月 11 日
コメント済み: Alex Sha 2024 年 12 月 10 日
I have data x sampled at times t. I would like to fit my function to this data. Below is a code.
clear; close all
x=[100; 85.4019292604501; 77.9310344827586; 79.3365583966828; 70.3524533;
13.213644524237; 24.5654917953199; 12.6526340272125;
9.71822886716503; 9.99113213124446; 10.525];
t=[0; 24; 24; 24; 24; 48; 48; 48; 72; 72; 72;];
mdl=fittype('A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t)-1+lambda.*t)/lambda^2))','indep','t');
fittedmdl = fit(t,x,mdl,'start',[0.1 0.1 0.1 0.1])
fittedmdl =
General model: fittedmdl(t) = A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t) -1+lambda.*t)/lambda^2)) Coefficients (with 95% confidence bounds): A = 100 (84.3, 115.7) C = -120.9 (-9.45e+09, 9.45e+09) D = 6.135 (-4.793e+08, 4.793e+08) lambda = 105.9 (-8.273e+09, 8.273e+09)
plot(fittedmdl,'k.')
hold on
plot(t,x,'.m', MarkerSize=20)
And I obtain the following figure:
I am not impressed with the fitting. Can someone please check where I could be going wrong. Thanks in anticipation.
  9 件のコメント
Editor
Editor 2022 年 10 月 11 日
Thank you all for your constructive comments. I can tell that one of the problem could be the poor choice of initial conditions for this complex model. I will try though to play around with the initial condtions to see whether anything good can come out.
Thank you once again
Cris LaPierre
Cris LaPierre 2022 年 10 月 11 日
Just responding about the missing negative sign. The negative sign before C has been applied to the contents inside parentheses. So it is there.
-C(1-exp(t)) is the same as C(exp(t)-1)

サインインしてコメントする。

採用された回答

Matt J
Matt J 2022 年 10 月 11 日
編集済み: Matt J 2022 年 10 月 11 日
x=[100; 85.4019292604501; 77.9310344827586; 79.3365583966828; 70.3524533;
13.213644524237; 24.5654917953199; 12.6526340272125;
9.71822886716503; 9.99113213124446; 10.525];
t=[0; 24; 24; 24; 24; 48; 48; 48; 72; 72; 72;];
mdl=fittype('A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t)-1+lambda.*t)/lambda^2))','indep','t');
fittedmdl = fit(t,x,mdl,'start',[100 0.1 0.1 0.1],'Lower',[0 0 0 0])
fittedmdl =
General model: fittedmdl(t) = A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t) -1+lambda.*t)/lambda^2)) Coefficients (with 95% confidence bounds): A = 108.1 (88.32, 128) C = 4.114e-14 (fixed at bound) D = 0.001322 (0.0002522, 0.002393) lambda = 8.823e-07 (-0.0381, 0.0381)
H=plot(fittedmdl,t,x);
H(1).MarkerSize=20; H(1).Color='m';
H(2).Color='k';H(2).LineWidth=2;
  2 件のコメント
Editor
Editor 2022 年 10 月 11 日
Thank you @Matt J for your help
Alex Sha
Alex Sha 2024 年 12 月 10 日
If only for @Editor's 11 sets of data, the result from Matt J's code is a local solution, the best one should be:
Sum Squared Error (SSE): 222.486707072606
Root of Mean Square Error (RMSE): 4.49733968911932
Correlation Coef. (R): 0.991854679874119
R-Square: 0.983775705988192
Parameter Best Estimate
--------- -------------
a 100.656116307162
c 0.00236233265266791
d 0.00102171687180199
lambda 2.87765446399321E-10
The SSE from Matt J's is about 614.5217, much bigger than above which is 222.4867

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by