fitglme
一般化線形混合効果モデルの当てはめ
説明
例
一般化線形混合効果モデルの当てはめ
標本データを読み込みます。
load mfr
このシミュレーションされたデータは、世界中で 50 の工場を操業している製造企業から取得しており、各工場が完成品の生産のためにバッチ処理を実行しています。同社は各バッチの欠陥数を減少させるために新たな製造プロセスを開発しました。新しいプロセスの効果をテストするため、同社は実験に参加させる 20 工場を無作為に選びました。10 工場では新プロセスを実施しますが、残りの 10 工場では旧プロセスの実行を続けます。各 20 工場で、同社は 5 つのバッチ (合計 100 バッチ) を実行し以下のデータを記録しました。
新しいプロセスがバッチに使用されたかどうかを示すフラグ (
newprocess
)各バッチの処理時間。時間単位 (
time
)バッチの温度。摂氏 (
temp
)バッチに使用する化学薬品の供給業者を示すカテゴリカル変数 (
supplier
)バッチ内の欠陥数 (
defects
)
またデータに含まれる time_dev
と temp_dev
は、摂氏 20 度で 3 時間の標準プロセスから得られる時間と温度の絶対偏差をそれぞれ表します。
固定効果予測子として newprocess
、time_dev
、temp_dev
および supplier
を使用して一般化線形混合効果モデルを当てはめます。工場特有の変動に起因して品質に差がある可能性を考慮するために、factory
別にグループ化された切片の変量効果項を含めます。応答変数 defects
はポアソン分布であり、このモデルの適切なリンク関数は対数です。係数の予測にラプラス近似メソッドを使用します。ダミー変数エンコードを 'effects'
として指定すると、ダミー変数の係数の合計が 0 になります。
欠陥数はポアソン分布を使用してモデル化できます
これは一般化線形混合効果モデルに対応します
ここで
は、バッチ 処理中の工場 で実行されたバッチで観測された欠陥数です。
は、バッチ () 処理中の工場 () に対応する欠陥の平均数です。
、 および は、バッチ 処理中の工場 に対応する各変数の測定値です。たとえば は、工場 で実行されたバッチ 処理中に新プロセスが使用されたかどうかを示します。
および はエフェクト (ゼロサム) コーディングを使用するダミー変数であり、バッチ 処理中に工場 で実行されたバッチに対して、それぞれ会社
C
またはB
が加工化学薬品を供給したかどうかを示します。は、工場特有の品質変動に相当する、各工場 の変量効果の切片です。
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ... 'Distribution','Poisson','Link','log','FitMethod','Laplace', ... 'DummyVarCoding','effects');
モデルを表示します。
disp(glme)
Generalized linear mixed-effects model fit by ML Model information: Number of observations 100 Fixed effects coefficients 6 Random effects coefficients 20 Covariance parameters 1 Distribution Poisson Link Log FitMethod Laplace Formula: defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory) Model fit statistics: AIC BIC LogLikelihood Deviance 416.35 434.58 -201.17 402.35 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)'} 1.4689 0.15988 9.1875 94 9.8194e-15 1.1515 1.7864 {'newprocess' } -0.36766 0.17755 -2.0708 94 0.041122 -0.72019 -0.015134 {'time_dev' } -0.094521 0.82849 -0.11409 94 0.90941 -1.7395 1.5505 {'temp_dev' } -0.28317 0.9617 -0.29444 94 0.76907 -2.1926 1.6263 {'supplier_C' } -0.071868 0.078024 -0.9211 94 0.35936 -0.22679 0.083051 {'supplier_B' } 0.071072 0.07739 0.91836 94 0.36078 -0.082588 0.22473 Random effects covariance parameters: Group: factory (20 Levels) Name1 Name2 Type Estimate {'(Intercept)'} {'(Intercept)'} {'std'} 0.31381 Group: Error Name Estimate {'sqrt(Dispersion)'} 1
Model information
表は標本データの観測値の合計 (100)、固定効果および変量効果係数の数 (それぞれ 6 および 20)、共分散パラメーターの数 (1) を表示しています。また、応答変数は Poisson
分布であり、リンク関数は Log
であり、近似メソッドが Laplace
であることもわかります。
Formula
はウィルキンソンの表記法によるモデル仕様を示します。
Model fit statistics
表はモデルの適合度の評価に使用された統計を表します。これには赤池情報量基準 (AIC
)、ベイズ情報量基準 (BIC
) 値、対数尤度 (LogLikelihood
) および逸脱度 (Deviance
) の値が含まれます。
Fixed effects coefficients
表は、fitglme
が 95% の信頼区間を返したことを示します。これには固定効果予測子ごとに 1 行が含まれ、各列にはその予測子に対応する統計が含まれます。列 1 (Name
) には各固定効果係数の名前が含まれ、列 2 (Estimate
) にはその推定値が含まれ、列 3 (SE
) には係数の標準誤差が含まれます。列 4 (tStat
) には係数が 0 に等しいという仮説検定のための 統計量が含まれます。列 5 (DF
) と列 6 (pValue
) には 統計量に対応する自由度と 値がそれぞれ含まれます。最後の 2 列 (Lower
および Upper
) には、各固定効果係数の 95% 信頼区間の下限と上限がそれぞれ表示されます。
Random effects covariance parameters
は各グループ化変数 (ここでは factory
のみ) の表を表示します。これにはレベルの総数 (20)、共分散パラメーターの型および推定値が含まれます。ここでの std
は、工場の予測子に関連付けられている変量効果の標準偏差が fitglme
から返されることを示します。この推定値は 0.31381 です。また、誤差パラメーターの型 (ここでは分散パラメーターの平方根) およびその推定値 1 を含む表も表示します。
fitglme
により生成される標準表示は変量効果パラメーターの信頼区間を指定しません。covarianceParameters
を使用して、これらの値を計算し表示します。
入力引数
formula
— モデル仕様の式
'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'
という形式の文字ベクトルまたは string スカラー
モデル仕様の式。'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'
という形式の文字ベクトルまたは string スカラーを指定します。この式では大文字小文字が区別されます。詳細は、式を参照してください。
例: 'y ~ treatment + (1|block)'
名前と値の引数
オプションの引数のペアを Name1=Value1,...,NameN=ValueN
として指定します。ここで Name
は引数名、Value
は対応する値です。名前と値の引数は他の引数の後ろにする必要がありますが、ペアの順序は関係ありません。
R2021a より前では、名前と値をそれぞれコンマを使って区切り、Name
を引用符で囲みます。
例: 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects'
は応答変数分布をポアソン、リンク関数を対数、近似メソッドをラプラスとして指定し、係数の合計が 0 であるダミー変数コーディングを指定します。
BinomialSize
— 二項分布の試行回数
1 (既定値) | スカラー値 | ベクトル | 変数名
二項分布の試行回数、つまり標本サイズ。スカラー値、応答と同じ長さのベクトルまたは入力テーブル内の変数名で構成される、コンマ区切りのペアとして指定します。変数名を指定する場合、変数は応答と同じ長さでなければなりません。BinomialSize
は Distribution
パラメーターが 'binomial'
のときのみ適用されます。
BinomialSize
がスカラー値の場合は、すべての観測が同じ試行回数であることを意味します。
データ型: single
| double
CheckHessian
— ヘッシアンの正定性をチェックするインジケーター
false
(既定値) | true
収束における制約のないパラメーターに関して、目的関数のヘッシアンの正定性をチェックするインジケーター。'CheckHessian'
と、false
または true
で構成されるコンマ区切りのペアとして指定します。既定値は false
です。
解の最適性を確認する場合や、共分散パラメーターの個数に関してモデルのパラメーターが多すぎるかどうかを判定する場合、'CheckHessian'
として true
を指定します。
'FitMethod'
を 'MPL'
または 'REMPL'
として指定する場合、固定効果の共分散および共分散パラメーターは、疑似尤度の最後の反復からの近似線形混合効果モデルに基づいています。
例: 'CheckHessian',true
CovarianceMethod
— 推定パラメーターの共分散計算メソッド
'conditional'
(既定値) | 'JointHessian'
推定パラメーターの共分散計算メソッド。'CovarianceMethod'
および 'conditional'
または 'JointHessian'
のいずれかで構成されるコンマ区切りのペアとして指定します。'conditional'
を指定すると、fitglme
は推定共分散パラメーターが与えられる場合の固定効果の共分散に、近似を高速に計算します。共分散パラメーターの共分散は計算されません。'JointHessian'
を指定すると、fitglme
はラプラシアン対数尤度を使用して観測された情報行列により、固定効果の結合共分散および共分散パラメーターを計算します。
'FitMethod'
を 'MPL'
または 'REMPL'
として指定する場合、固定効果の共分散および共分散パラメーターは、疑似尤度の最後の反復からの近似線形混合効果モデルに基づいています。
例: 'CovarianceMethod','JointHessian'
CovariancePattern
— 共分散行列のパターン
'FullCholesky'
| 'Isotropic'
| 'Full'
| 'Diagonal'
| 'CompSymm'
| 対称正方 logical 行列 | string 配列 | 文字ベクトルまたは logical 行列の cell 配列
変量効果の共分散行列のパターン。'CovariancePattern'
と 'FullCholesky'
、'Isotropic'
、'Full'
、'Diagonal'
、'CompSymm'
、対称正方 logical 行列、string 配列、文字ベクトルが格納されている cell 配列、または logical 行列が格納されている cell 配列から構成されるコンマ区切りのペアとして指定します。
変量効果の項が R 個ある場合、'CovariancePattern'
の値は長さ R の string 配列または cell 配列でなければなりません。配列の各要素 r では、r 番目の変量効果の項に関連付けられている変量効果ベクトルの共分散行列のパターンを指定します。各要素のオプションは以下のとおりです。
値 | 説明 |
---|---|
'FullCholesky' | コレスキー パラメーター表現を使用したフルの共分散行列。fitglme は、共分散行列のすべての要素を推定します。 |
'Isotropic' | 分散が等しい対角共分散行列。つまり、共分散行列の非対角要素は 0 に制約され、対角要素は等価に制約されます。たとえば、等方性共分散構造をもつ変量効果の項が 3 つある場合、この共分散行列は次のようになります。 σ21 は、変量効果項の共通分散です。 |
'Full' | 対数コレスキー パラメーター表現を使用したフルの共分散行列。fitlme は、共分散行列のすべての要素を推定します。 |
'Diagonal' | 対角共分散行列。つまり、共分散行列の非対角要素は 0 に制約されます。 |
'CompSymm' | 複合対称構造。つまり、対角線上の共通分散とすべての変量効果間の等しい相関です。たとえば、複合対称構造の共分散行列をもつ変量効果の項が 3 つある場合、この共分散行列は次のようになります。 σ2b1 は変量効果項の共通分散、σb1,b2 は任意の 2 つの変量効果項の間の共通共分散です。 |
PAT | 対称正方 logical 行列。'CovariancePattern' が行列 PAT によって定義されており、PAT(a,b) = false の場合、対応する共分散行列の要素 (a,b) は 0 に制約されます。 |
スカラー 変量効果の項の場合、既定値は 'Isotropic'
です。それ以外の場合は、既定値は 'FullCholesky'
です。
例: 'CovariancePattern','Diagonal'
例: 'CovariancePattern',{'Full','Diagonal'}
データ型: char
| string
| logical
| cell
DispersionFlag
— 分散パラメーターを計算するインジケーター
false
('binomial'
および 'poisson'
分布の場合) (既定値) | true
'binomial'
および 'poisson'
分布の分散パラメーターを計算するインジケーター。'DispersionFlag'
と以下のいずれかで構成されるコンマ区切りのペアとして指定します。
値 | 説明 |
---|---|
true | 標準誤差を計算するときに分散パラメーターを推定する |
false | 標準誤差を計算するときに 1.0 の理論値を使用する |
'DispersionFlag'
は 'FitMethod'
が 'MPL'
または 'REMPL'
のときのみ適用されます。
近似関数は常に他の分布の分散を予測します。
例: 'DispersionFlag',true
Distribution
— 応答変数の分布
'Normal'
(既定値) | 'Binomial'
| 'Poisson'
| 'Gamma'
| 'InverseGaussian'
応答変数の分布。'Distribution'
と以下のいずれかで構成されるコンマ区切りのペアとして指定します。
値 | 説明 |
---|---|
'Normal' | 正規分布 |
'Binomial' | 二項分布 |
'Poisson' | ポアソン分布 |
'Gamma' | ガンマ分布 |
'InverseGaussian' | 逆ガウス分布 |
例: 'Distribution','Binomial'
DummyVarCoding
— ダミー変数に対して使用するコーディング
'reference'
(既定値) | 'effects'
| 'full'
カテゴリカル変数から作成されたダミー変数に対して使用するコーディング。'DummyVarCoding'
と次の表に記載された変数のいずれかで構成されるコンマ区切りのペアとして指定します。
値 | 説明 |
---|---|
'reference' (既定の設定) | fitglme は、基準グループを使用してダミー変数を作成します。この方式では、最初のカテゴリを基準グループとして扱い、カテゴリの数よりも 1 つ少ないダミー変数を作成します。カテゴリカル変数のカテゴリの順序は、関数 categories を使用してチェックできます。順序を変更するには、関数 reordercats を使用します。 |
'effects' | fitglme は、エフェクト コーディングを使用してダミー変数を作成します。この方式では、–1 を使用して最後のカテゴリを表します。この方式では、カテゴリの数よりも 1 つ少ないダミー変数を作成します。 |
'full' | fitglme は、完全なダミー変数を作成します。この方式では、各カテゴリに対して 1 つのダミー変数を作成します。 |
ダミー変数の作成に関する詳細については、ダミー変数の自動作成を参照してください。
例: 'DummyVarCoding','effects'
EBMethod
— 変量効果の経験的ベイズ推定の近似に使用されるメソッド
'Auto'
(既定値) | 'LineSearchNewton'
| 'TrustRegion2D'
| 'fsolve'
変量効果の経験的ベイズ推定に使用されるメソッド。'EBMethod'
および次のうちいずれかから構成されるコンマ区切りのペアで指定します。
'Auto'
'LineSearchNewton'
'TrustRegion2D'
'fsolve'
'Auto'
は 'LineSearchNewton'
と類似していますが異なる収束基準を使用しているため、反復的な進捗を表示しません。'Auto'
および 'LineSearchNewton'
は非正準リンク関数により失敗する可能性があります。非正準リンク関数に関しては、'TrustRegion2D'
または 'fsolve'
が推奨されます。'fsolve'
を使用するには Optimization Toolbox™ が必要です。
例: 'EBMethod','LineSearchNewton'
EBOptions
— 経験的ベイズ最適化のオプション
構造体
経験的ベイズ最適化のオプション。'EBOptions'
および次を含む構造体で構成されるコンマ区切りのペアで指定します。
値 | 説明 |
---|---|
'TolFun' | 勾配ノルムの相対許容誤差。既定値は 1e-6 です。 |
'TolX' | ステップ サイズの絶対許容誤差。既定値は 1e-8 です。 |
'MaxIter' | 最大反復回数。既定値は 100 です。 |
'Display' | 'off' 、'iter' または 'final' 。既定値は 'off' です。 |
EBMethod
が 'Auto'
で 'FitMethod'
が 'Laplace'
の場合、TolFun
はモデルの線形予測子の相対許容誤差であり、'Display'
オプションは適用されません。
'EBMethod'
が 'fsolve'
の場合、'EBOptions'
は optimoptions('fsolve')
によって作成されたオブジェクトとして指定されなければなりません。
データ型: struct
Exclude
— 除外する行のインデックス
NaNs
を含まないすべての行を使用 (既定値) | 整数または論理値のベクトル
データ内の一般化線形混合効果モデルから除外する行のインデックス。'Exclude'
と整数ベクトルまたは論理値のベクトルで構成されるコンマ区切りのペアとして指定します。
たとえば、以下のようにして、近似から 13 番目と 67 番目の行を除外できます。
例: 'Exclude',[13,67]
データ型: single
| double
| logical
FitMethod
— モデル パラメーターの推定メソッド
'MPL'
(既定値) | 'REMPL'
| 'Laplace'
| 'ApproximateLaplace
モデル パラメーターの推定メソッド。'FitMethod'
と、以下のいずれかで構成されるコンマ区切りのペアとして指定します。
'MPL'
— 疑似最尤法'REMPL'
— 制限付き疑似最尤法'Laplace'
— ラプラス近似を使用した最尤法'ApproximateLaplace'
— 固定効果をプロファイルし、ラプラス近似を使用した最尤法
例: 'FitMethod','REMPL'
InitPLIterations
— 疑似尤度の反復の初期値
10 (既定値) | [1,∞) の範囲にある整数値
ApproximateLaplace
および Laplace
近似メソッドのパラメーターの初期化に使用される疑似尤度の反復の初期値。'InitPLIterations'
と 1 以上の整数値のコンマ区切りのペアとして指定します。
データ型: single
| double
Link
— リンク関数
'identity'
| 'log'
| 'logit'
| 'probit'
| 'comploglog'
| 'reciprocal'
| スカラー値 | 構造体
リンク関数。'Link'
と、以下のいずれかで構成されるコンマ区切りペアとして指定します。
値 | 説明 |
---|---|
'identity' |
これは正規分布の既定値です。 |
'log' |
これはポアソン分布の既定値です。 |
'logit' |
これは二項分布の既定値です。 |
'loglog' | g(mu) = log(-log(mu)) |
'probit' | g(mu) = norminv(mu) |
'comploglog' | g(mu) = log(-log(1-mu)) |
'reciprocal' | g(mu) = mu.^(-1) |
スカラー値 P | g(mu) = mu.^P |
構造体 S | 構造体。以下の名前の関数ハンドルを値としてもつ 4 つのフィールドがあります。
|
fitglme
で使用される既定のリンク関数は、応答の分布に依存する正準リンクです。
応答の分布 | 正準リンク関数 |
---|---|
'Normal' | 'identity' |
'Binomial' | 'logit' |
'Poisson' | 'log' |
'Gamma' | -1 |
'InverseGaussian' | -2 |
例: 'Link','log'
データ型: char
| string
| single
| double
| struct
MuStart
— 条件付き平均の開始値
スカラー値
条件付き平均の開始値。'MuStart'
とスカラー値で構成されるコンマ区切りのペアで指定します。有効な値は以下のとおりです。
応答の分布 | 有効な値 |
---|---|
'Normal' | (-Inf,Inf) |
'Binomial' | (0,1) |
'Poisson' | (0,Inf) |
'Gamma' | (0,Inf) |
'InverseGaussian' | (0,Inf) |
データ型: single
| double
Offset
— オフセット
zeros(n,1)
(既定値) | スカラー値 n 行 1 列のベクトル
オフセット。'Offset'
と n 行 1 列のスカラー値のベクトルをコンマで区切って指定します。n は応答ベクトルの長さです。n 行 1 列のスカラー値のベクトルの変数名を指定することもできます。'Offset'
は、係数値が 1.0
に固定されている追加予測子として使用されます。
データ型: single
| double
Optimizer
— 最適化アルゴリズム
'quasinewton'
(既定値) | 'fminsearch'
| 'fminunc'
最適化アルゴリズム。'Optimizer'
と以下のいずれかで構成されるコンマ区切りのペアとして指定します。
値 | 説明 |
---|---|
'quasinewton' | 信頼領域ベースの準ニュートン オプティマイザ―を使用します。statset('fitglme') を使用して、アルゴリズムのオプションを変更できます。オプションを指定しない場合、fitglme は statset('fitglme') の既定のオプションを使用します。 |
'fminsearch' | 導関数を使用しない Nelder-Mead メソッドを使用します。optimset('fminsearch') を使用して、アルゴリズムのオプションを変更できます。オプションを指定しない場合、fitglme は、optimset('fminsearch') の既定のオプションを使用します。 |
'fminunc' | 直線探索ベースの準ニュートン法を使用します。このオプションを指定するには、Optimization Toolbox がなければなりません。optimoptions('fminunc') を使用して、アルゴリズムのオプションを変更します。オプションを指定しない場合、fitglme は optimoptions('fminunc') の既定のオプションを使用します。'Algorithm' は 'quasi-newton' に設定されます。 |
例: 'Optimizer','fminsearch'
OptimizerOptions
— 最適化アルゴリズムのオプション
statset
によって返される構造体 | optimset
によって返される構造体 | optimoptions
によって返されるオブジェクト
最適化アルゴリズムのオプション。'OptimizerOptions'
と statset('fitglme')
によって返される構造体、optimset('fminsearch')
によって作成される構造体または optimoptions('fminunc')
から返されるオブジェクトで構成されるコンマ区切りのペアとして指定します。
'Optimizer'
が'fminsearch'
の場合、optimset('fminsearch')
を使用して、アルゴリズムのオプションを変更します。'Optimizer'
が'fminsearch'
で'OptimizerOptions'
を設定しない場合、fitglme
に使用される既定値はoptimset('fminsearch')
によって作成される既定のオプションです。'Optimizer'
が'fminunc'
の場合、optimoptions('fminunc')
を使用して、最適化アルゴリズムのオプションを変更します。'fminunc'
が使用するオプションについては、optimoptions
を参照してください。'Optimizer'
が'fminunc'
で'OptimizerOptions'
を設定しない場合、fitglme
で使用される既定値はoptimoptions('fminunc')
によって作成された既定のオプションです。'Algorithm'
は'quasi-newton'
に設定されます。'Optimizer'
が'quasinewton'
の場合は、statset('fitglme')
を使用して、最適化パラメーターを変更します。'Optimizer'
が'quasinewton'
でstatset
を使用して最適化パラメーターを変更しない場合、fitglme
はstatset('fitglme')
によって作成された既定のオプションを使用します。
'quasinewton'
オプティマイザ―は、statset('fitglme')
によって作成された構造体の以下のフィールドを使用します。
TolFun
— 目的関数の勾配の相対許容誤差
1e-6
(既定値) | 正のスカラー値
目的関数の勾配の相対許容誤差。正のスカラー値として指定します。
TolX
— ステップ サイズの絶対許容誤差
1e-12
(既定値) | 正のスカラー値
ステップ サイズの絶対許容誤差。正のスカラー値として指定します。
MaxIter
— 許容される最大反復回数
10000
(既定値) | 正のスカラー値
許容される最大反復回数。正のスカラー値として指定します。
Display
— 表示のレベル
'off'
(既定値) | 'iter'
| 'final'
表示のレベル。'off'
、'iter'
、'final'
のいずれかとして指定します。
PLIterations
— 疑似尤度の反復の最大数
100
(既定値) | 正の整数値
疑似尤度の反復の最大数 (PL)。'PLIterations'
と正の整数値で構成されるコンマ区切りのペアとして指定します。'FitMethod'
が 'MPL'
または 'REMPL'
の場合に PL はモデルの近似に使用されます。他の 'FitMethod'
値については、PL の反復は以降の最適化のパラメーターの初期化に使用されます。
例: 'PLIterations',200
データ型: single
| double
PLTolerance
— 疑似尤度の反復の相対許容誤差係数
1e–08
(既定値) | 正のスカラー値
疑似尤度の反復の相対許容誤差係数。'PLTolerance'
と正のスカラー値によって構成されるコンマ区切りのペアとして指定します。
例: 'PLTolerance',1e-06
データ型: single
| double
StartMethod
— 反復最適化を開始するメソッド
'default'
(既定値) | 'random'
反復最適化を開始するメソッド。'StartMethod'
と以下のいずれかで構成されるコンマ区切りのペアとして指定します。
値 | 説明 |
---|---|
'default' | 内部で定義される既定値 |
'random' | ランダムな初期値 |
例: 'StartMethod','random'
UseSequentialFitting
— 初期近似タイプ
false
(既定値) | true
初期近似タイプ。'UseSequentialFitting'
と false
または true
のいずれかで構成されるコンマ区切りのペアとして指定します。'UseSequentialFitting'
が false
の場合、すべての最尤法は疑似尤度の反復が 1 以上であれば初期化されます。'UseSequentialFitting'
が true
の場合、疑似尤度の反復による初期値は 'Laplace'
近似の 'ApproximateLaplace'
を使用して調整されます。
例: 'UseSequentialFitting',true
Verbose
— 画面に最適化プロセスを表示するインジケーター
0
(既定値) | 1
| 2
画面に最適化プロセスを表示するインジケーター。'Verbose'
と 0
、1
または 2
で構成されるコンマ区切りのペアとして指定します。'Verbose'
が 1
または 2
として指定されている場合、fitglme
は反復モデル近似プロセスの進捗を表示します。'Verbose'
を 2
として指定すると、個別の疑似尤度反復から反復最適化情報が表示されます。'Verbose'
を 1
として指定する場合、この表示は省略されます。
'Verbose'
の設定は、'OptimizerOptions'
の 'Display'
フィールドをオーバーライドします。
例: 'Verbose',1
Weights
— 観測値の重み
非負のスカラー値のベクトル
観測値の重み。'Weights'
と、非負のスカラー値の n 行 1 列のベクトル (n は観測値の数) で構成されるコンマ区切りのペアとして指定します。応答の分布が二項またはポアソンである場合、'Weights'
は正の整数のベクトルでなければなりません。
データ型: single
| double
出力引数
glme
— 一般化線形混合効果モデル
GeneralizedLinearMixedModel
オブジェクト
一般化線形混合効果モデル。GeneralizedLinearMixedModel
オブジェクトとして指定します。このオブジェクトのプロパティとメソッドについては、GeneralizedLinearMixedModel
を参照してください。
詳細
式
一般に、モデル仕様の式は 'y ~ terms'
という形式の文字ベクトルまたは string スカラーです。一般化線形混合効果モデルでは、この式は 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'
の形式になります。ここで、fixed
および random
には固定効果および変量効果の項が含まれます。
テーブル tbl
に以下のものが格納されていると仮定します。
応答変数
y
連続変数またはグループ化変数である予測子変数
Xj
グループ化変数
g1
、g2
、...、gR
ここで、Xj
および gr
のグループ化変数は、categorical 配列、logical 配列、文字配列、string 配列、または文字ベクトルの cell 配列が可能です。
この場合、'y ~ fixed + (random1|g1) + ... + (randomR|gR)'
の形式の式において、項 fixed
は固定効果の計画行列 X
の仕様に対応し、random
1 はグループ化変数 g
1 に対応する変量効果の計画行列 Z
1 の仕様であり、同様に random
R はグループ化変数 g
R に対応する変量効果の計画行列 Z
R の仕様です。fixed
項および random
項はウィルキンソンの表記法で表現できます。
ウィルキンソンの表記法は、モデルに存在する因子を記述します。この表記法は、モデルに存在する因子に関係するものであり、それらの因子の乗数 (係数) に関係するものではありません。
ウィルキンソンの表記法 | 標準表記の因子 |
---|---|
1 | 定数 (切片) 項 |
X^k 、k は正の整数 | X , X2 , ..., Xk |
X1 + X2 | X1 , X2 |
X1*X2 | X1 , X2 , X1.*X2 (elementwise multiplication of X1 and X2) |
X1:X2 | X1.*X2 のみ |
- X2 | X2 は含めない |
X1*X2 + X3 | X1 , X2 , X3 , X1*X2 |
X1 + X2 + X3 + X1:X2 | X1 , X2 , X3 , X1*X2 |
X1*X2*X3 - X1:X2:X3 | X1 , X2 , X3 , X1*X2 , X1*X3 , X2*X3 |
X1*(X2 + X3) | X1 , X2 , X3 , X1*X2 , X1*X3 |
Statistics and Machine Learning Toolbox™ 表記は、-1
を使用して項を明示的に削除しない限り、常に定数項を含みます。一般化線形混合効果モデルの仕様例は以下のとおりです。
次に例を示します。
式 | 説明 |
---|---|
'y ~ X1 + X2' | 切片 X1 および X2 の固定効果。これは、'y ~ 1 + X1 + X2' と等価です。 |
'y ~ -1 + X1 + X2' | X1 と X2 の切片と固定効果はありません。-1 を含めることによって暗黙的な切片の項は抑制されます。 |
'y ~ 1 + (1 | g1)' | グループ化変数 g1 のレベルごとの切片の固定効果と切片の変量効果の和。 |
'y ~ X1 + (1 | g1)' | 固定勾配のランダム切片モデル。 |
'y ~ X1 + (X1 | g1)' | 相関があり得るランダムな切片と勾配。これは、'y ~ 1 + X1 + (1 + X1|g1)' と等価です。 |
'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' | 切片と勾配の独立した変量効果項。 |
'y ~ 1 + (1 | g1) + (1 | g2) + (1 | g1:g2)' | g1 と g2 に対する独立したメイン効果のあるランダムな切片モデル + 独立した交互作用効果。 |
バージョン履歴
R2014b で導入
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)