CompactClassificationGAM
説明
CompactClassificationGAM
は、ClassificationGAM
モデル オブジェクト (バイナリ分類用の GAM) のコンパクトなバージョンです。コンパクトなモデルには、分類器の学習に使用されたデータが含まれません。このため、コンパクトなモデルを使用しても、交差検証など一部のタスクは実行できません。コンパクトなモデルは、新しいデータに対するラベルの予測などのタスクに使用します。
作成
CompactClassificationGAM
オブジェクトは、compact
を使用して完全な ClassificationGAM
モデル オブジェクトから作成します。
プロパティ
GAM のプロパティ
Interactions
— 交互作用項のインデックス
正の整数の 2 列の行列 | []
この プロパティ は読み取り専用です。
交互作用項のインデックス。正の整数の t
行 2 列の行列を指定します。ここで、t
はモデル内の交互作用項の数です。行列の各行は 1 つの交互作用項を表し、交互作用項の予測子データ X
の列インデックスを格納します。モデルに交互作用項が含まれない場合、このプロパティは空 ([]
) になります。
交互作用項は、p 値に基づく重要度の順序でモデルに追加されます。交互作用項がモデルに追加される順序を確認するには、このプロパティを使用します。
データ型: double
Intercept
— モデルの切片項
数値スカラー
この プロパティ は読み取り専用です。
モデルの切片 (定数) 項。予測子木と交互作用木における切片項の和です。数値スカラーを指定します。
データ型: single
| double
他の分類のプロパティ
CategoricalPredictors
— カテゴリカル予測子のインデックス
正の整数のベクトル | []
この プロパティ は読み取り専用です。
カテゴリカル予測子のインデックス。正の整数のベクトルとして指定します。CategoricalPredictors
には、対応する予測子がカテゴリカルであることを示すインデックス値が格納されます。インデックス値の範囲は 1 ~ p
です。p
はモデルの学習に使用した予測子の数です。どの予測子もカテゴリカルではない場合、このプロパティは空 ([]
) になります。
データ型: double
ClassNames
— 一意のクラス ラベル
categorical 配列 | 文字配列 | logical ベクトル | 数値ベクトル | 文字ベクトルの cell 配列
この プロパティ は読み取り専用です。
学習で使用する一意なクラス ラベル。categorical 配列、文字配列、logical ベクトル、数値ベクトル、または文字ベクトルの cell 配列を指定します。ClassNames
のデータ型はクラス ラベル Y
と同じです。(string 配列は文字ベクトルの cell 配列として扱われます)。ClassNames
はクラスの順序も決定します。
データ型: single
| double
| logical
| char
| cell
| categorical
Cost
— 誤分類のコスト
2 行 2 列の数値行列
誤分類コスト。2 行 2 列の数値行列として指定されます。
Cost(
は、真のクラスが i
,j
)i
である点をクラス j
に分類するコストです。Cost
の行と列の順序は、ClassNames
のクラスの順序に対応します。
Cost
の値は予測に使用されますが、学習には使用されません。値はドット表記を使用して変更できます。
例: Mdl.Cost = C;
データ型: double
ExpandedPredictorNames
— 展開された予測子名
文字ベクトルの cell 配列
この プロパティ は読み取り専用です。
展開された予測子名。文字ベクトルの cell 配列を指定します。
ExpandedPredictorNames
は、一般化加法モデルの PredictorNames
と同じです。
データ型: cell
PredictorNames
— 予測子変数名
文字ベクトルの cell 配列
この プロパティ は読み取り専用です。
予測子変数の名前。文字ベクトルの cell 配列を指定します。PredictorNames
の要素の順序は、予測子名が学習データに現れる順序に対応します。
データ型: cell
Prior
— 事前クラス確率
数値ベクトル
この プロパティ は読み取り専用です。
クラスの事前確率。2 要素の数値ベクトルとして指定されます。要素の順序は ClassNames
における要素の順序に対応します。
データ型: double
ResponseName
— 応答変数名
文字ベクトル
この プロパティ は読み取り専用です。
応答変数名。文字ベクトルを指定します。
データ型: char
ScoreTransform
— スコア変換
文字ベクトル | 関数ハンドル
スコア変換。文字ベクトルまたは関数ハンドルを指定します。ScoreTransform
は、組み込みの変換関数または予測した分類スコアを変換する関数のハンドルを表します。
スコア変換関数を function
などに変更するには、ドット表記を使用します。
組み込み関数の場合は、文字ベクトルを入力します。
Mdl.ScoreTransform = 'function';
次の表は、使用可能な組み込み関数の一覧です。
値 説明 'doublelogit'
1/(1 + e–2x) 'invlogit'
log(x / (1 – x)) 'ismax'
最大のスコアをもつクラスのスコアを 1 に設定し、他のすべてのクラスのスコアを 0 に設定する 'logit'
1/(1 + e–x) 'none'
または'identity'
x (変換なし) 'sign'
x < 0 のとき –1
x = 0 のとき 0
x > 0 のとき 1'symmetric'
2x – 1 'symmetricismax'
最大のスコアをもつクラスのスコアを 1 に設定し、他のすべてのクラスのスコアを –1 に設定する 'symmetriclogit'
2/(1 + e–x) – 1 MATLAB® 関数やユーザー定義関数の場合は、関数ハンドルを入力します。
Mdl.ScoreTransform = @function;
function
は、行列 (元のスコア) を受け入れて同じサイズの行列 (変換したスコア) を返さなければなりません。
このプロパティによって、predict
、margin
、edge
などのオブジェクト関数で使用する出力スコアの計算が決まります。事後確率の計算には 'logit'
、事後確率のロジットの計算には 'none'
を使用します。
データ型: char
| function_handle
オブジェクト関数
予測の解釈
lime | Local Interpretable Model-agnostic Explanations (LIME) |
partialDependence | 部分依存の計算 |
plotLocalEffects | 一般化加法モデル (GAM) 内の項のローカルな効果のプロット |
plotPartialDependence | 部分依存プロット (PDP) および個別条件付き期待値 (ICE) プロットの作成 |
shapley | シャープレイ値 |
新しい観測値での予測性能の評価
精度の比較
compareHoldout | 新しいデータを使用して 2 つの分類モデルの精度を比較 |
例
一般化加法モデルのサイズの縮小
学習データを削除することにより、完全な一般化加法モデル (GAM) のサイズを縮小します。完全なモデルには、学習データが保持されます。コンパクトなモデルを使用すると、メモリ効率を向上させることができます。
ionosphere
データ セットを読み込みます。このデータ セットには、レーダー反射についての 34 個の予測子と、不良 ('b'
) または良好 ('g'
) という 351 個の二項反応が含まれています。
load ionosphere
予測子 X
とクラス ラベル Y
を使用して、GAM に学習させます。クラス名を指定することが推奨されます。
Mdl = fitcgam(X,Y,'ClassNames',{'b','g'})
Mdl = ClassificationGAM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'logit' Intercept: 2.2715 NumObservations: 351
Mdl
は ClassificationGAM
モデル オブジェクトです。
分類器のサイズを縮小します。
CMdl = compact(Mdl)
CMdl = CompactClassificationGAM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'logit' Intercept: 2.2715
CMdl
は CompactClassificationGAM
モデル オブジェクトです。
各分類器が使用するメモリの量を表示します。
whos('Mdl','CMdl')
Name Size Bytes Class Attributes CMdl 1x1 1030188 classreg.learning.classif.CompactClassificationGAM Mdl 1x1 1231165 ClassificationGAM
完全な分類器 (Mdl
) の方がコンパクトな分類器 (CMdl
) より大きくなっています。
新しい観測値のラベルを効率的に設定するため、Mdl
を MATLAB® ワークスペースから削除し、CMdl
と新しい予測子の値を predict
に渡すことができます。
バージョン履歴
R2021a で導入
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)