resubLoss
マルチクラス誤り訂正出力符号 (ECOC) モデルの再代入分類損失
説明
は、1 つ以上の名前と値のペアの引数で指定された追加オプションを使用して、分類損失を返します。たとえば、損失関数、復号化方式、詳細レベルなどを指定できます。L = resubLoss(Mdl,Name,Value)
例
SVM バイナリ学習器による ECOC モデルの再代入損失を計算します。
フィッシャーのアヤメのデータ セットを読み込みます。予測子データ X と応答データ Y を指定します。
load fisheriris
X = meas;
Y = species;SVM バイナリ分類器を使用して ECOC モデルを学習させます。SVM テンプレートを使用して予測子を標準化し、クラスの順序を指定します。
t = templateSVM('Standardize',true);
classOrder = unique(Y)classOrder = 3×1 cell
{'setosa' }
{'versicolor'}
{'virginica' }
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);
t は SVM テンプレート オブジェクトです。学習時は、t の空のプロパティに対して既定値が使用されます。Mdl は ClassificationECOC モデルです。
再代入分類誤差を推定します。これは既定の分類損失です。
L = resubLoss(Mdl)
L = 0.0267
この ECOC モデルは、学習標本のアヤメの 2.67% を誤分類します。
各観測値の最小バイナリ損失を考慮するカスタム損失関数を使用して、ECOC モデルの品質を判別します。
フィッシャーのアヤメのデータ セットを読み込みます。予測子データ X、応答データ Y、および Y 内のクラスの順序を指定します。
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y) % Class order
classOrder = 3×1 categorical
setosa
versicolor
virginica
rng(1); % For reproducibilitySVM バイナリ分類器を使用して ECOC モデルを学習させます。SVM テンプレートを使用して予測子を標準化し、クラスの順序を指定します。
t = templateSVM('Standardize',true); Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);
t は SVM テンプレート オブジェクトです。学習時は、t の空のプロパティに対して既定値が使用されます。Mdl は ClassificationECOC モデルです。
各観測値の最小損失を受け入れ、すべての観測値の最小損失の平均を求める、関数を作成します。S は、resubPredict の出力 NegLoss に対応します。
lossfun = @(~,S,~,~)mean(min(-S,[],2));
学習データのカスタム分類損失を計算します。
resubLoss(Mdl,'LossFun',lossfun)ans = 0.0097
学習データの平均最小バイナリ損失は 0.0065 です。
入力引数
学習済みの完全なマルチクラス ECOC モデル。fitcecoc によって学習をさせた ClassificationECOC モデルを指定します。
名前と値の引数
オプションの引数のペアを Name1=Value1,...,NameN=ValueN として指定します。ここで、Name は引数名で、Value は対応する値です。名前と値の引数は他の引数の後に指定しなければなりませんが、ペアの順序は重要ではありません。
R2021a より前では、名前と値をそれぞれコンマを使って区切り、Name を引用符で囲みます。
例: resubLoss(Mdl,'BinaryLoss','hamming','LossFun',@lossfun) は、バイナリ学習器の損失関数として 'hamming' を、全体的な損失関数としてカスタム関数ハンドル @lossfun を指定します。
バイナリ学習器損失関数。組み込みの損失関数の名前または関数ハンドルとして指定します。
次の表で、組み込み関数について説明します。ここで、yj は特定のバイナリ学習器のクラス ラベル (集合 {–1,1,0} 内)、sj は観測値 j のスコア、g(yj,sj) はバイナリ損失の式です。
値 説明 スコア領域 g(yj,sj) "binodeviance"二項分布からの逸脱度 (–∞,∞) log[1 + exp(–2yjsj)]/[2log(2)] "exponential"指数 (–∞,∞) exp(–yjsj)/2 "hamming"ハミング [0,1] または (–∞,∞) [1 – sign(yjsj)]/2 "hinge"ヒンジ (–∞,∞) max(0,1 – yjsj)/2 "linear"線形 (–∞,∞) (1 – yjsj)/2 "logit"ロジスティック (–∞,∞) log[1 + exp(–yjsj)]/[2log(2)] "quadratic"2 次 [0,1] [1 – yj(2sj – 1)]2/2 バイナリ損失は、yj = 0 の場合に損失が 0.5 になるように正規化されます。また、各クラスについて平均のバイナリ損失が計算されます[1]。
カスタム バイナリ損失関数の場合は関数ハンドルを指定します。たとえば、
customFunctionの場合はBinaryLoss=@customFunctionを指定します。customFunctionの形式は次のとおりです。bLoss = customFunction(M,s)
MはMdl.CodingMatrixに格納された K 行 B 列の符号化行列です。sは 1 行 B 列の分類スコアの行ベクトルです。bLossは分類損失です。このスカラーは、特定のクラスのすべての学習器についてバイナリ損失を集計します。たとえば、平均バイナリ損失を使用して、各クラスの学習器の損失を集計できます。K は、クラスの数です。
B はバイナリ学習器の数です。
カスタムなバイナリ損失関数を渡す例については、カスタム バイナリ損失関数の使用による ECOC モデルのテスト標本ラベルの予測を参照してください。
次の表に BinaryLoss の既定値を示します。既定値は、バイナリ学習器が返すスコアの範囲によって異なります。
| 仮定 | 既定値 |
|---|---|
すべてのバイナリ学習器が次のいずれかである。
| "quadratic" |
| すべてのバイナリ学習器が SVM であるか、SVM 学習器の線形またはカーネル分類モデルである。 | "hinge" |
すべてのバイナリ学習器が、AdaboostM1 または GentleBoost によって学習をさせたアンサンブルである。 | "exponential" |
すべてのバイナリ学習器が、LogitBoost によって学習をさせたアンサンブルである。 | "binodeviance" |
fitcecoc で FitPosterior=true を設定して、クラスの事後確率を予測するように指定している。 | "quadratic" |
| バイナリ学習器が異種混合で、さまざまな損失関数を使用している。 | "hamming" |
既定値を確認するには、コマンド ラインでドット表記を使用して学習済みモデルの BinaryLoss プロパティを表示します。
例: BinaryLoss="binodeviance"
データ型: char | string | function_handle
バイナリ損失を集計する復号化方式。"lossweighted" または "lossbased" として指定します。詳細は、バイナリ損失を参照してください。
例: Decoding="lossbased"
データ型: char | string
損失関数。'classiferror'、'classifcost'、または関数ハンドルとして指定します。
組み込み関数
'classiferror'を指定します。この場合、損失関数は分類誤差であり、誤分類された観測値の比率です。組み込み関数
'classifcost'を指定します。この場合、損失関数は観測誤分類コストです。既定のコスト行列 (正しい分類の場合の要素値は 0、誤った分類の場合の要素値は 1) を使用する場合、'classifcost'と'classiferror'の損失の値は同じです。または、関数ハンドル表記を使用して独自の関数を指定します。
n = size(X,1)が標本サイズ、Kがクラス数であると仮定します。関数には署名lossvalue = lossfun(C,S,W,Cost)がなければなりません。ここで、次のようになります。出力引数
lossvalueはスカラーです。関数名 (
lossfun) を指定します。Cはn行K列の logical 行列であり、対応する観測値が属するクラスを各行が示します。列の順序はMdl.ClassNamesのクラスの順序に対応します。Cを作成するには、各行について観測値pがクラスqに含まれている場合にC(p,q) = 1を設定します。行pの他のすべての要素を0に設定します。Sは、符号を反転したクラスの損失値が含まれているn行K列の数値行列です。各列は観測と対応しています。列の順序はMdl.ClassNamesのクラスの順序に対応します。入力Sは、resubPredictの出力引数NegLossに似ています。Wは、観測値の重みのn行 1 列の数値ベクトルです。Wを渡す場合、その要素は正規化され、合計が1になります。Costは、誤分類コストの、K行K列の数値行列です。たとえば、Cost = ones(K) – eye(K)は、正しい分類のコストとして 0 を、誤分類のコストとして 1 を指定します。
'LossFun',@lossfunを使用して独自の関数を指定します。
データ型: char | string | function_handle
推定オプション。statset によって返される構造体配列として指定します。
並列計算を起動するには、Parallel Computing Toolbox™ ライセンスが必要です。
例: Options=statset(UseParallel=true)
データ型: struct
詳細レベル。0 または 1 として指定します。Verbose は、コマンド ウィンドウに表示される診断メッセージの量を制御します。
Verbose が 0 の場合、診断メッセージは表示されません。それ以外の場合は、診断メッセージが表示されます。
例: Verbose=1
データ型: single | double
詳細
"分類誤差" は次のような形式になります。
ここで
wj は観測値 j の重みです。重みは再度正規化され、合計は 1 になります。
観測 j の予測クラスが真のクラスと異なる場合、ej = 1 になり、それ以外の場合は 0 になります。
つまり、分類誤差は、分類器が誤分類した観測値の比率です。
"観測誤分類コスト" は次のような形式になります。
ここで
wj は観測値 j の重みです。重みは再度正規化され、合計は 1 になります。
は真のクラスが yj である場合に観測値をクラス に分類するユーザー指定のコストです。
"バイナリ損失" は、バイナリ学習器がどの程度の精度で観測値をクラスに分類するかを決定する、クラスと分類スコアの関数です。ソフトウェアでバイナリ損失をどのように集計して各観測値の予測クラスを判定するかは、ECOC モデルの "復号化方式" で指定します。
以下のように仮定します。
mkj は符号化設計行列 M の要素 (k,j)、つまりバイナリ学習器 j のクラス k に対応する符号。M は K 行 B 列の行列であり、K はクラスの数、B はバイナリ学習器の数です。
sj は観測値に対するバイナリ学習器 j のスコア。
g はバイナリ損失関数。
は観測値の予測クラス。
ソフトウェアでは 2 つの復号化方式をサポートしています。
関数 predict、resubPredict、および kfoldPredict は、それぞれの観測値とクラスについて、argmin の目的関数の符号反転値を 2 番目の出力引数 (NegLoss) として返します。
次の表は、サポートされる損失関数をまとめたものです。ここで、yj は特定のバイナリ学習器のクラス ラベル (集合 {–1,1,0} 内)、sj は観測値 j のスコア、g(yj,sj) はバイナリ損失関数です。
| 値 | 説明 | スコア領域 | g(yj,sj) |
|---|---|---|---|
"binodeviance" | 二項分布からの逸脱度 | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
"exponential" | 指数 | (–∞,∞) | exp(–yjsj)/2 |
"hamming" | ハミング | [0,1] または (–∞,∞) | [1 – sign(yjsj)]/2 |
"hinge" | ヒンジ | (–∞,∞) | max(0,1 – yjsj)/2 |
"linear" | 線形 | (–∞,∞) | (1 – yjsj)/2 |
"logit" | ロジスティック | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
"quadratic" | 2 次 | [0,1] | [1 – yj(2sj – 1)]2/2 |
yj = 0 のときに損失が 0.5 になるようにバイナリ損失が正規化され、バイナリ学習器の平均が集計に使用されます[1]。
ECOC 分類器の全体的な性能の尺度である全体の分類損失 (オブジェクト関数 resubLoss および resubPredict の名前と値の引数 LossFun により指定) とバイナリ損失を混同しないでください。
参照
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.
[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recog. Lett. Vol. 30, Issue 3, 2009, pp. 285–297.
[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.
拡張機能
並列実行するには、この関数を呼び出すときに名前と値の引数 Options を指定し、statset を使用してオプション構造体の UseParallel フィールドを true に設定します。
Options=statset(UseParallel=true)
並列計算の詳細については、自動並列サポートを使用した MATLAB 関数の実行 (Parallel Computing Toolbox)を参照してください。
この関数は、GPU 配列を完全にサポートします。詳細は、GPU での MATLAB 関数の実行 (Parallel Computing Toolbox)を参照してください。
バージョン履歴
R2014b で導入
参考
ClassificationECOC | loss | predict | resubPredict | fitcecoc
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)