Main Content

ベイズ最適化および ASHA 最適化による回帰モデルの自動選択

この例では、関数 fitrauto を使用し、指定した学習予測子と応答データに基づいてさまざまなハイパーパラメーターの値をもつ回帰モデルのタイプの選択を自動的に試す方法を示します。既定では、この関数はモデルの選択と評価にベイズ最適化を使用します。学習データ セットに多数の観測値が含まれている場合は、代わりに非同期連続半減アルゴリズム (ASHA) を使用できます。最適化が完了すると、fitrauto は、データ セット全体で学習済みの、新しいデータについての応答が最も優れているとされるモデルを返します。テスト データに対するモデルの性能をチェックします。

データの準備

標本データ セット NYCHousing2015 を読み込みます。これには、2015 年のニューヨーク市における不動産の売上に関する情報を持つ 10 の変数が含まれます。この例では、これらの変数の一部を使用して売価を解析します。

load NYCHousing2015

標本データ セット NYCHousing2015 を読み込む代わりに、NYC Open Data Web サイトからデータをダウンロードして、次の方法でインポートすることができます。

folder = 'Annualized_Rolling_Sales_Update';
ds = spreadsheetDatastore(folder,"TextType","string","NumHeaderLines",4);
ds.Files = ds.Files(contains(ds.Files,"2015"));
ds.SelectedVariableNames = ["BOROUGH","NEIGHBORHOOD","BUILDINGCLASSCATEGORY","RESIDENTIALUNITS", ...
    "COMMERCIALUNITS","LANDSQUAREFEET","GROSSSQUAREFEET","YEARBUILT","SALEPRICE","SALEDATE"];
NYCHousing2015 = readall(ds);

データ セットを前処理して、対象の予測子変数を選択します。前処理手順のいくつかは、線形回帰モデルの学習の例の手順と同じです。

まず、可読性を高めるため、変数名を小文字に変更します。

NYCHousing2015.Properties.VariableNames = lower(NYCHousing2015.Properties.VariableNames);

次に、特定の問題値を持つ標本を削除します。たとえば、面積の測定値 grosssquarefeet または landsquarefeet の少なくとも 1 つが非ゼロの標本のみを残します。0 ドルの saleprice は現金対価なしの所有権移転を示すものと仮定し、その saleprice の値をもつ標本を削除します。1500 以下の yearbuilt の値はタイプミスであると仮定し、対応する標本を削除します。

NYCHousing2015(NYCHousing2015.grosssquarefeet == 0 & NYCHousing2015.landsquarefeet == 0,:) = [];
NYCHousing2015(NYCHousing2015.saleprice == 0,:) = [];
NYCHousing2015(NYCHousing2015.yearbuilt <= 1500,:) = [];

datetime 配列として指定された変数 saledate を、MM (月) と DD (日) の 2 つの数値列に変換し、変数 saledate を削除します。すべて 2015 年の標本のため、年は無視します。

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.saledate);
NYCHousing2015.saledate = [];

変数 borough の数値は区の名前を示します。この変数を名前を使用したカテゴリカル変数に変更します。

NYCHousing2015.borough = categorical(NYCHousing2015.borough,1:5, ...
    ["Manhattan","Bronx","Brooklyn","Queens","Staten Island"]);

変数 neighborhood には 254 のカテゴリがあります。簡単にするため、この変数は削除します。

NYCHousing2015.neighborhood = [];

変数 buildingclasscategory をカテゴリカル変数に変換し、関数wordcloudを使用して変数を確認します。

NYCHousing2015.buildingclasscategory = categorical(NYCHousing2015.buildingclasscategory);
wordcloud(NYCHousing2015.buildingclasscategory);

1 戸建て住宅、2 戸建て住宅、3 戸建て住宅のみに興味があると仮定します。これらの住宅の標本インデックスを見つけ、それ以外の標本を削除します。次に、変数 buildingclasscategory を、整数値のカテゴリ名をもつ順序カテゴリカル変数に変更します。

idx = ismember(string(NYCHousing2015.buildingclasscategory), ...
    ["01  ONE FAMILY DWELLINGS","02  TWO FAMILY DWELLINGS","03  THREE FAMILY DWELLINGS"]);
NYCHousing2015 = NYCHousing2015(idx,:);
NYCHousing2015.buildingclasscategory = categorical(NYCHousing2015.buildingclasscategory, ...
    ["01  ONE FAMILY DWELLINGS","02  TWO FAMILY DWELLINGS","03  THREE FAMILY DWELLINGS"], ...
    ["1","2","3"],'Ordinal',true);

すると、変数 buildingclasscategory は、1 つの住宅に住む家族の数を示します。

関数 summary を使用して、応答変数 saleprice を調べます。

s = summary(NYCHousing2015);
s.saleprice
ans = struct with fields:
           Size: [24972 1]
           Type: 'double'
    Description: ''
          Units: ''
     Continuity: []
            Min: 1
         Median: 515000
            Max: 37000000
     NumMissing: 0

変数 saleprice のヒストグラムを作成します。

histogram(NYCHousing2015.saleprice)

saleprice の分布は右の裾が長く、すべての値が 0 より大きいため、変数 saleprice を対数変換します。

NYCHousing2015.saleprice = log(NYCHousing2015.saleprice);

同様に、変数 grosssquarefeet および landsquarefeet を変換します。変数が 0 に等しい場合に備えて、各変数の対数を取る前に値 1 を加算します。

NYCHousing2015.grosssquarefeet = log(1 + NYCHousing2015.grosssquarefeet);
NYCHousing2015.landsquarefeet = log(1 + NYCHousing2015.landsquarefeet);

データの分割と外れ値の削除

cvpartitionを使用して、データ セットを学習セットとテスト セットに分割します。モデル選択とハイパーパラメーター調整のプロセスに観測値の約 80% を使用し、fitrauto によって返された最終モデルの性能のテストに他の 20% を使用します。

rng("default") % For reproducibility of the partition
c = cvpartition(length(NYCHousing2015.saleprice),"Holdout",0.2);
trainData = NYCHousing2015(training(c),:);
testData = NYCHousing2015(test(c),:);

関数isoutlierを使用して、学習データから salepricegrosssquarefeet、および landsquarefeet の外れ値を特定して削除します。

[priceIdx,priceL,priceU] = isoutlier(trainData.saleprice);
trainData(priceIdx,:) = [];

[grossIdx,grossL,grossU] = isoutlier(trainData.grosssquarefeet);
trainData(grossIdx,:) = [];

[landIdx,landL,landU] = isoutlier(trainData.landsquarefeet);
trainData(landIdx,:) = [];

学習データの計算で使用したのと同じ下限および上限のしきい値を使用して、テスト データから salepricegrosssquarefeet、および landsquarefeet の外れ値を削除します。

testData(testData.saleprice < priceL | testData.saleprice > priceU,:) = [];
testData(testData.grosssquarefeet < grossL | testData.grosssquarefeet > grossU,:) = [];
testData(testData.landsquarefeet < landL | testData.landsquarefeet > landU,:) = [];

ベイズ最適化による自動モデル選択の使用

fitrauto を使用して、trainData のデータに適切な回帰モデルを見つけます。既定では、fitrauto は、ベイズ最適化を使用してモデルとそのハイパーパラメーターの値を選択し、各モデルについて log(1+valLoss) の値を計算します。ここで、"valLoss" は交差検証の平均二乗誤差 (MSE) です。fitrauto は最適化のプロット、および最適化の結果の反復表示を提供します。これらの結果を解釈する方法の詳細については、Verbose の表示を参照してください。

ベイズ最適化を並列実行するよう指定します。これには Parallel Computing Toolbox™ が必要です。並列でのタイミングに再現性がないため、並列ベイズ最適化で再現性のある結果が生成されるとは限りません。最適化の複雑度に応じて、特に大きなデータ セットでは、この処理に時間がかかる場合があります。

bayesianOptions = struct("UseParallel",true);
[bayesianMdl,bayesianResults] = fitrauto(trainData,"saleprice", ...
    "HyperparameterOptimizationOptions",bayesianOptions);
Warning: Data set has more than 10000 observations. Because ASHA optimization often finds good solutions faster than Bayesian optimization for data sets with many observations, try specifying the 'Optimizer' field value as 'asha' in the 'HyperparameterOptimizationOptions' value structure.
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 90
Total time (MaxTime): Inf

|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|    1 |       8 | Best   |       0.25922 |            8.7966 |         0.25922 |         0.25922 |          svm | BoxConstraint:                0.0055914 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0056086 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                          17.88 |
|    2 |       7 | Accept |       0.19644 |            67.356 |         0.19314 |         0.19521 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  232 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          8 |
|    3 |       7 | Best   |       0.19314 |             67.33 |         0.19314 |         0.19521 |          svm | BoxConstraint:                   529.96 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     813.67 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0014318 |
|    4 |       8 | Accept |       0.19662 |            75.495 |         0.19314 |         0.19521 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  271 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         53 |
|    5 |       8 | Best   |       0.18769 |            79.998 |         0.18769 |          0.1877 |          svm | BoxConstraint:                   23.501 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                      37.99 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0072166 |
|    6 |       8 | Accept |       0.20198 |            67.278 |         0.18769 |          0.1877 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  246 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       1114 |
|    7 |       8 | Accept |       0.20227 |            71.042 |         0.18769 |          0.1877 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  246 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       1114 |
|    8 |       8 | Accept |       0.29931 |            30.061 |         0.18769 |          0.1877 |         tree | MinLeafSize:                          2 |
|    9 |       8 | Best   |       0.18737 |            101.93 |         0.18737 |          0.1874 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  297 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       3220 |
|   10 |       8 | Accept |       0.25922 |            8.4803 |         0.18737 |          0.1874 |          svm | BoxConstraint:                  0.31228 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                       73.3 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.1891 |
|   11 |       8 | Accept |       0.25922 |            7.6613 |         0.18737 |          0.1874 |          svm | BoxConstraint:                   107.75 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     414.93 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         27.903 |
|   12 |       8 | Accept |       0.19582 |            62.053 |         0.18737 |         0.18742 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  247 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       4243 |
|   13 |       8 | Accept |       0.18795 |            1.6154 |         0.18737 |         0.18742 |         tree | MinLeafSize:                        219 |
|   14 |       8 | Best   |       0.17764 |            256.31 |         0.17764 |         0.17767 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  275 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|   15 |       8 | Accept |        0.1971 |            59.641 |         0.17764 |         0.17767 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  208 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        210 |
|   16 |       8 | Accept |       0.19855 |            1.8433 |         0.17764 |         0.17767 |         tree | MinLeafSize:                        895 |
|   17 |       8 | Accept |       0.18966 |            78.082 |         0.17764 |         0.17767 |          svm | BoxConstraint:                   18.072 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     48.632 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.014558 |
|   18 |       8 | Accept |       0.18558 |            1.0007 |         0.17764 |         0.17767 |         tree | MinLeafSize:                         81 |
|   19 |       8 | Accept |       0.21098 |            3.0171 |         0.17764 |         0.17767 |         tree | MinLeafSize:                         12 |
|   20 |       8 | Best   |       0.17762 |            292.86 |         0.17762 |         0.17765 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  299 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        161 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   21 |       8 | Accept |       0.23354 |            76.519 |         0.17762 |         0.17765 |          svm | BoxConstraint:                0.0045714 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     31.869 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0072361 |
|   22 |       8 | Accept |       0.27791 |            16.397 |         0.17762 |         0.17765 |         tree | MinLeafSize:                          3 |
|   23 |       8 | Accept |       0.20705 |           0.56716 |         0.17762 |         0.17765 |         tree | MinLeafSize:                       1381 |
|   24 |       8 | Accept |       0.25951 |            8.5641 |         0.17762 |         0.17765 |         tree | MinLeafSize:                          4 |
|   25 |       8 | Accept |        0.1853 |            103.97 |         0.17762 |         0.17765 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  218 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       2260 |
|   26 |       8 | Best   |       0.17748 |            234.83 |         0.17748 |         0.17795 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  227 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        161 |
|   27 |       8 | Accept |       0.21866 |            47.523 |         0.17748 |         0.17756 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  239 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       2731 |
|   28 |       8 | Best   |       0.17744 |            209.05 |         0.17744 |         0.17723 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  209 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         12 |
|   29 |       8 | Accept |       0.23155 |            5.0007 |         0.17744 |         0.17723 |         tree | MinLeafSize:                          7 |
|   30 |       8 | Accept |       0.25922 |            9.2475 |         0.17744 |         0.17723 |          svm | BoxConstraint:                   404.64 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     3.2648 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1.9718 |
|   31 |       8 | Accept |        0.1856 |            223.47 |         0.17744 |         0.17723 |          svm | BoxConstraint:                   169.91 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     27.071 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0098403 |
|   32 |       8 | Accept |       0.23949 |            8.5208 |         0.17744 |         0.17723 |         tree | MinLeafSize:                          6 |
|   33 |       8 | Accept |       0.25922 |            7.5558 |         0.17744 |         0.17723 |          svm | BoxConstraint:                   1.3089 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.051591 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                           10.5 |
|   34 |       8 | Accept |       0.29931 |            49.086 |         0.17744 |         0.17723 |         tree | MinLeafSize:                          2 |
|   35 |       8 | Accept |       0.19293 |            2.0938 |         0.17744 |         0.17723 |         tree | MinLeafSize:                        421 |
|   36 |       8 | Accept |        0.2433 |            44.756 |         0.17744 |         0.17745 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  213 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       5333 |
|   37 |       8 | Accept |       0.21113 |           0.58255 |         0.17744 |         0.17745 |         tree | MinLeafSize:                       2018 |
|   38 |       8 | Accept |         0.178 |             196.2 |         0.17744 |         0.17745 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  200 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        530 |
|   39 |       8 | Accept |       0.25922 |           0.15808 |         0.17744 |         0.17745 |         tree | MinLeafSize:                       9074 |
|   40 |       8 | Accept |       0.18727 |            1.3591 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         46 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   41 |       8 | Accept |       0.18556 |            1.1831 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        106 |
|   42 |       8 | Accept |       0.18534 |            1.2318 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         91 |
|   43 |       8 | Accept |       0.18634 |           0.78251 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         69 |
|   44 |       8 | Accept |       0.18657 |           0.66041 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        127 |
|   45 |       8 | Accept |        0.1859 |            1.1918 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         71 |
|   46 |       8 | Accept |       0.19423 |            89.074 |         0.17744 |         0.17745 |          svm | BoxConstraint:                   111.04 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     660.47 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.011798 |
|   47 |       8 | Accept |       0.18592 |            1.2115 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        111 |
|   48 |       8 | Accept |       0.18682 |            1.6234 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        143 |
|   49 |       8 | Best   |       0.17736 |            276.94 |         0.17736 |         0.17735 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  254 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        330 |
|   50 |       8 | Accept |       0.18845 |            2.9137 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         41 |
|   51 |       8 | Accept |       0.18563 |            2.2093 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         80 |
|   52 |       8 | Accept |       0.18529 |           0.84567 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         82 |
|   53 |       8 | Accept |       0.18529 |           0.98317 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         83 |
|   54 |       8 | Accept |       0.19472 |            1.9906 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         25 |
|   55 |       8 | Accept |       0.22651 |           0.65124 |         0.17736 |         0.17735 |         tree | MinLeafSize:                       4236 |
|   56 |       8 | Accept |       0.33688 |             103.3 |         0.17736 |         0.17735 |         tree | MinLeafSize:                          1 |
|   57 |       8 | Accept |       0.18636 |            1.2646 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         67 |
|   58 |       8 | Best   |       0.17725 |            212.81 |         0.17725 |         0.17725 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         63 |
|   59 |       8 | Accept |       0.18521 |            1.2055 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         99 |
|   60 |       8 | Accept |       0.18521 |            1.5858 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         97 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   61 |       8 | Accept |       0.18545 |            1.5226 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         96 |
|   62 |       8 | Accept |       0.18547 |           0.87251 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         95 |
|   63 |       8 | Accept |       0.19011 |            1.0096 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        291 |
|   64 |       8 | Accept |        0.1949 |            1.1552 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        598 |
|   65 |       8 | Accept |       0.18745 |            1.2691 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        175 |
|   66 |       8 | Accept |        0.1867 |            1.1783 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         56 |
|   67 |       8 | Accept |       0.18534 |            1.4406 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         91 |
|   68 |       8 | Accept |       0.18592 |             1.183 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        111 |
|   69 |       8 | Accept |       0.18535 |            1.0641 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   70 |       8 | Accept |       0.18535 |            1.2021 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   71 |       8 | Accept |       0.19073 |            2.2491 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         35 |
|   72 |       8 | Accept |       0.18662 |            1.7733 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         57 |
|   73 |       8 | Accept |       0.18534 |            1.7077 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         91 |
|   74 |       8 | Accept |       0.17749 |             237.6 |         0.17725 |         0.17725 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  234 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        291 |
|   75 |       8 | Accept |        0.1854 |            1.3993 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         93 |
|   76 |       8 | Accept |       0.18516 |            2.5983 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         85 |
|   77 |       8 | Accept |       0.18519 |            1.0102 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        100 |
|   78 |       8 | Accept |       0.18518 |           0.85859 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         87 |
|   79 |       8 | Accept |       0.18545 |           0.74629 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         96 |
|   80 |       8 | Accept |       0.18516 |           0.93654 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         84 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   81 |       8 | Accept |       0.18523 |            1.1649 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         88 |
|   82 |       8 | Accept |       0.18719 |            1.7177 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        157 |
|   83 |       8 | Accept |       0.18545 |             1.704 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         96 |
|   84 |       8 | Accept |       0.18529 |           0.95989 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         82 |
|   85 |       8 | Accept |       0.18535 |           0.95307 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   86 |       8 | Accept |       0.18596 |            1.1768 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        110 |
|   87 |       8 | Accept |       0.18518 |            1.3797 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         86 |
|   88 |       8 | Accept |       0.18535 |           0.89804 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   89 |       8 | Accept |       0.18572 |            303.75 |         0.17725 |         0.17725 |          svm | BoxConstraint:                   205.71 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     26.184 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0010342 |
|   90 |       8 | Accept |       0.18562 |            1.5575 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         79 |

__________________________________________________________
Optimization completed.
Total iterations: 90
Total elapsed time: 940.6075 seconds
Total time for training and validation: 3869.0047 seconds

Best observed learner is an ensemble model with:
	Learner:              ensemble
	Method:                LSBoost
	NumLearningCycles:         221
	MinLeafSize:                63
Observed log(1 + valLoss): 0.17725
Time for training and validation: 212.8107 seconds

Best estimated learner (returned model) is an ensemble model with:
	Learner:              ensemble
	Method:                LSBoost
	NumLearningCycles:         221
	MinLeafSize:                63
Estimated log(1 + valLoss): 0.17725
Estimated time for training and validation: 212.9539 seconds

Documentation for fitrauto display

Total elapsed time の値から、ベイズ最適化の実行に時間がかかったことがわかります (約 16 分)。

fitrauto によって返される最終的なモデルが、最適な推定学習器となります。モデルを返す前に、関数は学習データ セット全体 (trainData)、リストされている Learner (またはモデル) のタイプ、および表示されたハイパーパラメーター値を使用して、モデルの再学習を行います。

ASHA 最適化による自動モデル選択の使用

学習セットの観測値の数が原因でベイズ最適化による fitrauto の実行に長い時間がかかる場合は、代わりに ASHA 最適化による fitrauto を使用することを検討してください。trainData に含まれる観測値が 10,000 を超える場合は、ASHA 最適化による fitrauto を使用して適切な回帰モデルを自動的に見つけるよう試します。ASHA 最適化による fitrauto を使用すると、関数はさまざまなハイパーパラメーターの値をもつ複数のモデルを無作為に選択し、学習データの小さいサブセットで学習させます。特定のモデルに対する log(1+valLoss) の値 (ここで "valLoss" は交差検証 MSE) が有望な場合、そのモデルをプロモートし、より多くの学習データで学習させます。このプロセスを繰り返し、データの量を徐々に増やしながら有望なモデルに学習させます。既定の設定では、fitrauto は、最適化のプロット、および最適化の結果の反復表示を提供します。これらの結果を解釈する方法の詳細については、Verbose の表示を参照してください。

ASHA 最適化を並列実行するよう指定します。ASHA 最適化は既定のベイズ最適化に比べて反復回数が多くなる場合が多いことに注意してください。時間の制約がある場合は、HyperparameterOptimizationOptions 構造体の MaxTime フィールドを指定して、fitrauto を実行する秒数を制限できます。

ashaOptions = struct("Optimizer","asha","UseParallel",true);
[ashaMdl,ashaResults] = fitrauto(trainData,"saleprice", ...
    "HyperparameterOptimizationOptions",ashaOptions);
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 340
Total time (MaxTime): Inf

|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|    1 |       7 | Error  |           NaN |           0.74354 |         0.25939 |          228 |          svm | BoxConstraint:                  0.75271 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     11.791 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.70708 |
|    2 |       7 | Best   |       0.25939 |            0.6809 |         0.25939 |          228 |          svm | BoxConstraint:                    322.3 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      183.2 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         18.839 |
|    3 |       4 | Error  |           NaN |            1.3032 |         0.20407 |          228 |          svm | BoxConstraint:                 0.097665 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     15.388 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0088338 |
|    4 |       4 | Error  |           NaN |           0.99145 |         0.20407 |          228 |          svm | BoxConstraint:                  0.23529 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0053637 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.19924 |
|    5 |       4 | Error  |           NaN |           0.96507 |         0.20407 |          228 |          svm | BoxConstraint:                  0.22674 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     80.959 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         1.3516 |
|    6 |       4 | Best   |       0.20407 |            1.2793 |         0.20407 |          228 |         tree | MinLeafSize:                          7 |
|    7 |       7 | Accept |       0.26031 |           0.20035 |         0.20407 |          228 |          svm | BoxConstraint:                 0.020147 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     172.03 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         23.989 |
|    8 |       7 | Accept |       0.21268 |            0.5432 |         0.20407 |          228 |         tree | MinLeafSize:                          2 |
|    9 |       8 | Best   |       0.19076 |            1.3514 |         0.19076 |          910 |         tree | MinLeafSize:                          7 |
|   10 |       8 | Accept |       0.20199 |            1.5091 |         0.19076 |          228 |          svm | BoxConstraint:                0.0010751 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.1093 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0079776 |
|   11 |       8 | Accept |       0.25956 |            0.4022 |         0.19076 |          228 |         tree | MinLeafSize:                       6369 |
|   12 |       8 | Accept |        0.1994 |           0.19641 |         0.19076 |          228 |         tree | MinLeafSize:                         20 |
|   13 |       8 | Accept |       0.24111 |            11.229 |         0.19076 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  209 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         95 |
|   14 |       8 | Best   |       0.19072 |           0.40043 |         0.19072 |          910 |         tree | MinLeafSize:                         20 |
|   15 |       8 | Accept |       0.25943 |           0.18893 |         0.19072 |          228 |         tree | MinLeafSize:                        239 |
|   16 |       8 | Accept |       0.25931 |            14.082 |         0.19072 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  234 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       3498 |
|   17 |       7 | Accept |        0.2316 |            22.039 |         0.19072 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         65 |
|   18 |       7 | Accept |       0.19145 |             21.99 |         0.19072 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   19 |       8 | Accept |       0.25944 |            20.756 |         0.19072 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  239 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       4727 |
|   20 |       8 | Accept |        0.2593 |           0.28174 |         0.19072 |          228 |          svm | BoxConstraint:                   235.91 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     152.29 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          18.94 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   21 |       8 | Accept |        0.4238 |            16.204 |         0.19072 |          228 |          svm | BoxConstraint:                   159.02 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     809.99 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.037815 |
|   22 |       7 | Accept |       0.19826 |            26.317 |         0.19072 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  260 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          4 |
|   23 |       7 | Accept |       0.25943 |           0.15328 |         0.19072 |          228 |         tree | MinLeafSize:                        469 |
|   24 |       7 | Accept |       0.19506 |            21.139 |         0.19072 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   25 |       8 | Best   |       0.18635 |             16.44 |         0.18635 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   26 |       8 | Accept |       0.20324 |            23.523 |         0.18635 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  293 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|   27 |       8 | Accept |        0.2593 |           0.41755 |         0.18635 |          228 |          svm | BoxConstraint:                   71.635 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     360.15 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         1.6391 |
|   28 |       8 | Accept |        0.1979 |            20.326 |         0.18635 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  260 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          4 |
|   29 |       8 | Best   |       0.18429 |            27.503 |         0.18429 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   30 |       8 | Error  |           NaN |           0.85989 |         0.18429 |          228 |          svm | BoxConstraint:                0.0015051 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     153.62 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.39629 |
|   31 |       8 | Accept |       0.25996 |           0.33645 |         0.18429 |          228 |          svm | BoxConstraint:                   26.844 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0013803 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.63605 |
|   32 |       8 | Accept |       0.21217 |           0.65386 |         0.18429 |          228 |         tree | MinLeafSize:                          2 |
|   33 |       8 | Error  |           NaN |            61.857 |         0.18429 |          228 |          svm | BoxConstraint:                  0.76664 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.26621 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0062126 |
|   34 |       8 | Accept |        0.2595 |           0.54994 |         0.18429 |          228 |         tree | MinLeafSize:                        452 |
|   35 |       8 | Accept |        3.9362 |            72.511 |         0.18429 |          228 |          svm | BoxConstraint:                  0.16539 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.10362 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0028173 |
|   36 |       8 | Accept |       0.19261 |            2.1563 |         0.18429 |          910 |          svm | BoxConstraint:                0.0010751 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.1093 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0079776 |
|   37 |       8 | Accept |        0.2592 |           0.17352 |         0.18429 |          228 |         tree | MinLeafSize:                       5784 |
|   38 |       8 | Accept |       0.25932 |           0.33198 |         0.18429 |          228 |          svm | BoxConstraint:                   9.1472 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0014485 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.013142 |
|   39 |       8 | Accept |        4.0201 |            95.532 |         0.18429 |          228 |          svm | BoxConstraint:                0.0034677 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.024607 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.51376 |
|   40 |       8 | Accept |       0.25946 |            14.029 |         0.18429 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  233 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       1217 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   41 |       8 | Best   |       0.17949 |            55.465 |         0.17949 |         3639 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   42 |       8 | Accept |       0.25919 |           0.47484 |         0.17949 |          228 |          svm | BoxConstraint:                0.0012342 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.9096 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         10.912 |
|   43 |       8 | Accept |       0.19872 |            16.731 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  284 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          5 |
|   44 |       8 | Accept |         8.752 |            78.427 |         0.17949 |          228 |          svm | BoxConstraint:                0.0038233 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     0.1099 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.021148 |
|   45 |       8 | Accept |       0.25934 |            13.151 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  291 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       1016 |
|   46 |       8 | Accept |       0.25921 |            10.067 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  227 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       8012 |
|   47 |       8 | Error  |           NaN |           0.83663 |         0.17949 |          228 |          svm | BoxConstraint:                   2.8936 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     7.6973 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.010032 |
|   48 |       8 | Error  |           NaN |            93.522 |         0.17949 |          228 |          svm | BoxConstraint:                0.0057789 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.024173 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0019218 |
|   49 |       8 | Accept |       0.19661 |            26.107 |         0.17949 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  293 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|   50 |       8 | Accept |       0.25921 |           0.27531 |         0.17949 |          228 |          svm | BoxConstraint:                 0.058053 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     14.827 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         13.791 |
|   51 |       8 | Error  |           NaN |           0.59973 |         0.17949 |          228 |          svm | BoxConstraint:                 0.023521 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      5.596 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0014762 |
|   52 |       8 | Accept |        4.3906 |            99.781 |         0.17949 |          228 |          svm | BoxConstraint:                   96.756 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.010139 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.13254 |
|   53 |       8 | Error  |           NaN |            2.0696 |         0.17949 |          228 |          svm | BoxConstraint:                 0.006626 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.70401 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0054568 |
|   54 |       8 | Accept |       0.25924 |             15.37 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  290 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       2231 |
|   55 |       8 | Error  |           NaN |           0.31071 |         0.17949 |          228 |          svm | BoxConstraint:                   361.12 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     52.988 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.43709 |
|   56 |       8 | Error  |           NaN |            2.0388 |         0.17949 |          228 |          svm | BoxConstraint:                   16.409 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     3.8514 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.023638 |
|   57 |       8 | Accept |       0.20898 |           0.93287 |         0.17949 |          910 |         tree | MinLeafSize:                          2 |
|   58 |       8 | Accept |       0.20038 |           0.35381 |         0.17949 |          228 |         tree | MinLeafSize:                          8 |
|   59 |       8 | Accept |       0.25945 |            17.341 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  273 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        688 |
|   60 |       8 | Error  |           NaN |            64.494 |         0.17949 |          228 |          svm | BoxConstraint:                  0.11582 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.34549 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.16015 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   61 |       7 | Accept |       0.25938 |            11.039 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  207 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       2893 |
|   62 |       7 | Accept |       0.22949 |           0.29853 |         0.17949 |          228 |         tree | MinLeafSize:                         77 |
|   63 |       8 | Accept |       0.19119 |           0.70442 |         0.17949 |          910 |         tree | MinLeafSize:                          8 |
|   64 |       8 | Accept |       0.18582 |            25.838 |         0.17949 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  284 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          5 |
|   65 |       8 | Accept |       0.21762 |            20.878 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  202 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         38 |
|   66 |       8 | Error  |           NaN |            73.825 |         0.17949 |          228 |          svm | BoxConstraint:                   913.22 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.38887 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.15596 |
|   67 |       8 | Accept |       0.25935 |           0.33883 |         0.17949 |          228 |         tree | MinLeafSize:                        150 |
|   68 |       8 | Accept |       0.20006 |            23.908 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  249 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   69 |       8 | Accept |       0.20364 |            33.513 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         15 |
|   70 |       8 | Accept |       0.20016 |            20.232 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  259 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          6 |
|   71 |       8 | Accept |       0.25946 |           0.16791 |         0.17949 |          228 |         tree | MinLeafSize:                       6893 |
|   72 |       8 | Accept |       0.35187 |           0.63625 |         0.17949 |          228 |          svm | BoxConstraint:                  0.19105 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     84.991 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.073344 |
|   73 |       8 | Accept |       0.20327 |            15.236 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  211 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   74 |       8 | Error  |           NaN |             72.02 |         0.17949 |          228 |          svm | BoxConstraint:                  0.23518 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.53603 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.011066 |
|   75 |       8 | Accept |       0.26049 |           0.33939 |         0.17949 |          228 |          svm | BoxConstraint:                0.0013512 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0015726 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         24.722 |
|   76 |       8 | Error  |           NaN |           0.85688 |         0.17949 |          228 |          svm | BoxConstraint:                   843.32 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     98.622 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0013207 |
|   77 |       8 | Accept |       0.25939 |           0.24487 |         0.17949 |          228 |          svm | BoxConstraint:                   288.52 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0011806 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.12918 |
|   78 |       8 | Accept |       0.19746 |            21.241 |         0.17949 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  249 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   79 |       8 | Accept |       0.25967 |           0.36212 |         0.17949 |          228 |          svm | BoxConstraint:                  0.86126 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.80732 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         3.6131 |
|   80 |       8 | Error  |           NaN |            30.648 |         0.17949 |          228 |          svm | BoxConstraint:                 0.014789 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     10.262 |
|      |         |        |               |                   |                 |              |              | Epsilon:                     0.00053097 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   81 |       8 | Best   |       0.17835 |            69.425 |         0.17835 |         3639 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   82 |       8 | Error  |           NaN |           0.70287 |         0.17835 |          228 |          svm | BoxConstraint:                 0.044119 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     725.24 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.067068 |
|   83 |       8 | Accept |       0.25922 |           0.20654 |         0.17835 |          228 |         tree | MinLeafSize:                       5151 |
|   84 |       8 | Accept |       0.18422 |            21.378 |         0.17835 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  259 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          6 |
|   85 |       8 | Accept |       0.25956 |            15.603 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  220 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        398 |
|   86 |       8 | Accept |       0.25925 |            16.649 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       3704 |
|   87 |       8 | Accept |       0.19717 |            20.535 |         0.17835 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  211 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   88 |       8 | Accept |       0.25922 |            14.481 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  215 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       4480 |
|   89 |       8 | Accept |       0.25923 |           0.31075 |         0.17835 |          228 |          svm | BoxConstraint:                   93.534 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0012628 |
|      |         |        |               |                   |                 |              |              | Epsilon:                     0.00070881 |
|   90 |       8 | Error  |           NaN |            105.27 |         0.17835 |          228 |          svm | BoxConstraint:                 0.002754 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.030396 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0049664 |
|   91 |       8 | Accept |       0.38786 |            1.3545 |         0.17835 |          228 |          svm | BoxConstraint:                   59.578 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     7.0125 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.048114 |
|   92 |       8 | Error  |           NaN |            20.814 |         0.17835 |          228 |          svm | BoxConstraint:                   16.856 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0069656 |
|      |         |        |               |                   |                 |              |              | Epsilon:                     0.00079872 |
|   93 |       7 | Accept |       0.25921 |            16.582 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  275 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        779 |
|   94 |       7 | Accept |        0.2592 |           0.15883 |         0.17835 |          228 |         tree | MinLeafSize:                       5053 |
|   95 |       7 | Accept |       0.29146 |            1.0903 |         0.17835 |          228 |          svm | BoxConstraint:                0.0029396 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      35.64 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0034305 |
|   96 |       8 | Accept |       0.41923 |           0.56162 |         0.17835 |          228 |          svm | BoxConstraint:                 0.034261 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     9.1273 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.04355 |
|   97 |       8 | Accept |       0.20525 |           0.70228 |         0.17835 |          910 |         tree | MinLeafSize:                          2 |
|   98 |       8 | Accept |       0.20139 |            0.2252 |         0.17835 |          228 |         tree | MinLeafSize:                         12 |
|   99 |       8 | Accept |       0.25923 |           0.21183 |         0.17835 |          228 |          svm | BoxConstraint:                 0.076547 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.3896 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         5.7928 |
|  100 |       8 | Error  |           NaN |            1.1784 |         0.17835 |          228 |          svm | BoxConstraint:                   103.69 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     380.67 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.023201 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|  101 |       8 | Accept |       0.44687 |           0.86774 |         0.17835 |          228 |          svm | BoxConstraint:                 0.011037 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     464.93 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.01088 |
|  102 |       8 | Accept |       0.19127 |           0.46502 |         0.17835 |          910 |         tree | MinLeafSize:                         12 |
|  103 |       8 | Accept |        3.9177 |            105.84 |         0.17835 |          228 |          svm | BoxConstraint:                  0.18091 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0093375 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0046786 |
|  104 |       8 | Error  |           NaN |           0.33372 |         0.17835 |          228 |          svm | BoxConstraint:                   0.3297 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      60.67 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          1.522 |
|  105 |       8 | Accept |       0.21268 |           0.30804 |         0.17835 |          228 |         tree | MinLeafSize:                         46 |
|  106 |       8 | Accept |       0.19508 |           0.63479 |         0.17835 |          228 |          svm | BoxConstraint:                   141.35 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     51.798 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0064846 |
|  107 |       8 | Accept |       0.25922 |           0.28154 |         0.17835 |          228 |          svm | BoxConstraint:                   111.07 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.010862 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          2.691 |
|  108 |       8 | Accept |        0.2592 |            13.479 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        163 |
|  109 |       7 | Accept |       0.19161 |            1.6643 |         0.17835 |          910 |          svm | BoxConstraint:                   141.35 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     51.798 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0064846 |
|  110 |       7 | Accept |       0.25926 |           0.23349 |         0.17835 |          228 |          svm | BoxConstraint:                0.0014645 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.37849 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         2.0091 |
|  111 |       8 | Accept |       0.25923 |           0.21702 |         0.17835 |          228 |          svm | BoxConstraint:                   46.088 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0015015 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.30073 |
|  112 |       8 | Accept |       0.19687 |            25.947 |         0.17835 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         15 |
|  113 |       8 | Accept |       0.17871 |             51.27 |         0.17835 |         3639 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  259 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          6 |
|  114 |       8 | Accept |       0.20081 |            17.879 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  278 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|  115 |       8 | Accept |       0.20322 |            17.346 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  255 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          4 |
|  116 |       8 | Error  |           NaN |           0.95447 |         0.17835 |          228 |          svm | BoxConstraint:                   2.9117 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     16.756 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0023456 |
|  117 |       8 | Accept |       0.19387 |            13.294 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  215 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|  118 |       8 | Accept |       0.19425 |            15.035 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  212 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          8 |
|  119 |       8 | Accept |       0.25924 |           0.37346 |         0.17835 |          228 |          svm | BoxConstraint:                   0.0209 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     9.3689 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          26.54 |
|  120 |       8 | Accept |       0.26066 |           0.27477 |         0.17835 |          228 |         tree | MinLeafSize:                        272 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|  121 |       8 | Accept |       0.19484 |            18.004 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  261 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         14 |
|  122 |       8 | Accept |        0.2592 |           0.23541 |         0.17835 |          228 |         tree | MinLeafSize:                        133 |
|  123 |       8 | Accept |       0.25921 |           0.29134 |         0.17835 |          228 |          svm | BoxConstraint:                   1.5995 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     2.8676 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         15.471 |
|  124 |       8 | Accept |       0.23223 |           0.43343 |         0.17835 |          228 |         tree | MinLeafSize:                          1 |
|  125 |       8 | Accept |       0.25972 |             0.203 |         0.17835 |          228 |          svm | BoxConstraint:                0.0086335 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      400.4 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         2.0501 |
|  126 |       8 | Error  |           NaN |            0.2949 |         0.17835 |          228 |          svm | BoxConstraint:                   7.4426 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.002509 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0026332 |
|  127 |       8 | Accept |       0.26011 |           0.29631 |         0.17835 |          228 |          svm | BoxConstraint:                  0.11427 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     567.97 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          17.13 |
|  128 |       8 | Accept |       0.25923 |           0.32762 |         0.17835 |          228 |          svm | BoxConstraint:                   83.085 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0012722 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0023782 |
|  129 |       8 | Accept |       0.19582 |            20.926 |         0.17835 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  278 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|  130 |       8 | Accept |       0.21135 |           0.35596 |         0.17835 |          228 |         tree | MinLeafSize:                          3 |
|  131 |       8 | Error  |           NaN |            87.153 |         0.17835 |          228 |          svm | BoxConstraint:                    358.5 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.081127 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.002852 |
|  132 |       8 | Accept |       0.25922 |           0.18321 |         0.17835 |          228 |         tree | MinLeafSize:                       4593 |
|  133 |       7 | Error  |           NaN |           0.80608 |         0.17835 |          228 |          svm | BoxConstraint:                0.0082359 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     64.836 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.25191 |
|  134 |       7 | Accept |        0.2592 |            0.1831 |         0.17835 |          228 |          svm | BoxConstraint:                 0.029216 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     8.6693 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         14.283 |
|  135 |       8 | Accept |       0.21864 |           0.42231 |         0.17835 |          228 |         tree | MinLeafSize:                         66 |
|  136 |       8 | Accept |        4.0359 |            106.74 |         0.17835 |          228 |          svm | BoxConstraint:                     97.5 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.013998 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.04939 |
|  137 |       8 | Accept |        0.1864 |            18.298 |         0.17835 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  215 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|  138 |       8 | Error  |           NaN |           0.93006 |         0.17835 |          228 |          svm | BoxConstraint:                0.0092347 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     496.16 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.11821 |
|  139 |       8 | Accept |       0.18463 |            21.544 |         0.17835 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  212 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          8 |
|  140 |       8 | Error  |           NaN |            4.9749 |         0.17835 |          228 |          svm | BoxConstraint:                  0.24317 |
|      |         |        |               ...

__________________________________________________________
Optimization completed.
Total iterations: 340
Total elapsed time: 725.1069 seconds
Total time for training and validation: 5193.6688 seconds

Best observed learner is an ensemble model with:
	Learner:              ensemble
	Method:                LSBoost
	NumLearningCycles:         289
	MinLeafSize:                 2
Observed log(1 + valLoss): 0.17753
Time for training and validation: 295.4965 seconds

Documentation for fitrauto display

Total elapsed time の値から、ASHA 最適化の方がベイズ最適化よりも実行時間が短くなったことがわかります (約 12 分)。

fitrauto によって返される最終的なモデルが、観測された最適な学習器となります。モデルを返す前に、関数は学習データ セット全体 (trainData)、リストされている Learner (またはモデル) のタイプ、および表示されたハイパーパラメーター値を使用して、モデルの再学習を行います。

テスト セットのパフォーマンスの評価

テスト セット testData で返されたモデル bayesianMdl および ashaMdl のパフォーマンスを評価します。各モデルについて、テスト セットの平均二乗誤差 (MSE) を計算し、MSE の対数変換を行って、fitrauto の詳細表示の値と一致させます。MSE (および対数変換された MSE) の値が小さいほど、パフォーマンスが優れていることを示します。

bayesianTestMSE = loss(bayesianMdl,testData,"saleprice");
bayesianTestError = log(1 + bayesianTestMSE)
bayesianTestError = 0.1782
ashaTestMSE = loss(ashaMdl,testData,"saleprice");
ashaTestError = log(1 + ashaTestMSE)
ashaTestError = 0.1795

各モデルについて、テスト セットの予測応答値と実際の応答値を比較します。予測売価を縦軸に、実際の売価を横軸に沿ってプロットします。基準線上にある点は予測が正しいことを示します。優れたモデルでは、生成された予測が線の近くに分布します。1 行 2 列のタイル レイアウトを使用して 2 つのモデルの結果を比較します。

bayesianTestPredictions = predict(bayesianMdl,testData);
ashaTestPredictions = predict(ashaMdl,testData);

tiledlayout(1,2)

nexttile
plot(testData.saleprice,bayesianTestPredictions,".")
hold on
plot(testData.saleprice,testData.saleprice) % Reference line
hold off
xlabel(["True Sale Price","(log transformed)"])
ylabel(["Predicted Sale Price","(log transformed)"])
title("Bayesian Optimization Model")

nexttile
plot(testData.saleprice,ashaTestPredictions,".")
hold on
plot(testData.saleprice,testData.saleprice) % Reference line
hold off
xlabel(["True Sale Price","(log transformed)"])
ylabel(["Predicted Sale Price","(log transformed)"])
title("ASHA Optimization Model")

対数変換された MSE の値および予測プロットから、bayesianMdl および ashaMdl モデルの性能は、テスト セットで同様に優れていることがわかります。

各モデルについて、箱ひげ図を使用して、行政区ごとの予測売価と実際の売価の分布を比較します。関数boxchartを使用して、箱ひげ図を作成します。各箱ひげ図には、中央値、第 1 四分位数と第 3 四分位数、外れ値 (四分位数間範囲を使用して計算)、および外れ値ではない最小値と最大値を表示します。特に、各ボックスの内側の線は標本の中央値であり、円形のマーカーは外れ値を示します。

各行政区について、赤色の箱ひげ図 (予測売価の分布を示す) と青色の箱ひげ図 (実際の売価の分布を示す) を比較します。予測売価と実際の売価の分布が似ていることは、予測が優れていることを示します。1 行 2 列のタイル レイアウトを使用して 2 つのモデルの結果を比較します。

tiledlayout(1,2)

nexttile
boxchart(testData.borough,testData.saleprice)
hold on
boxchart(testData.borough,bayesianTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Borough")
ylabel(["Sale Price","(log transformed)"])
title("Bayesian Optimization Model")

nexttile
boxchart(testData.borough,testData.saleprice)
hold on
boxchart(testData.borough,ashaTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Borough")
ylabel(["Sale Price","(log transformed)"])
title("ASHA Optimization Model")

両方のモデルについて、各行政区における予測売価の中央値は実際の売価の中央値とほぼ一致しています。予測売価は、実際の売価よりも変動が少ないようです。

各モデルについて、住宅に住む家族の数ごとに予測売価と実際の売価の分布を比較するボックス チャートを表示します。1 行 2 列のタイル レイアウトを使用して 2 つのモデルの結果を比較します。

tiledlayout(1,2)

nexttile
boxchart(testData.buildingclasscategory,testData.saleprice)
hold on
boxchart(testData.buildingclasscategory,bayesianTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Number of Families in Dwelling")
ylabel(["Sale Price","(log transformed)"])
title("Bayesian Optimization Model")

nexttile
boxchart(testData.buildingclasscategory,testData.saleprice)
hold on
boxchart(testData.buildingclasscategory,ashaTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Number of Families in Dwelling")
ylabel(["Sale Price","(log transformed)"])
title("ASHA Optimization Model")

両方のモデルについて、各タイプの住宅における予測売価の中央値は実際の売価の中央値とほぼ一致しています。予測売価は、実際の売価よりも変動が少ないようです。

各モデルについて、テスト セットの残差のヒストグラムをプロットし、それらが正規分布していることを確認します (売価は対数変換されます)。1 行 2 列のタイル レイアウトを使用して 2 つのモデルの結果を比較します。

bayesianTestResiduals = testData.saleprice - bayesianTestPredictions;
ashaTestResiduals = testData.saleprice - ashaTestPredictions;

tiledlayout(1,2)

nexttile
histogram(bayesianTestResiduals)
title("Test Set Residuals (Bayesian)")

nexttile
histogram(ashaTestResiduals)
title("Test Set Residuals (ASHA)")

ヒストグラムはわずかに左の裾が長くなっていますが、両方とも 0 付近でほぼ対称です。

参考

| | |

関連するトピック