Applying AI to Radar and Lidar Processing
Perception is at the heart of autonomous systems and surveillance systems. High resolution sensors such as lidar and radar provide a wealth of data that feed perception algorithms and enable new ways of understanding the surrounding environment.
Radar and lidar engineers leverage deep learning and machine learning to automate and improve accuracy of processing pipelines for a variety of applications in consumer and automotive applications, including target and terrain classification in surveillance systems, object detection and identification in autonomous systems, and AR/VR applications.
Learn how MATLAB® and Simulink® are used to overcome common challenges including:
- Handling data scarcity for training
- Labeling sparse 3D point clouds and radar signals
- Applying deep learning models designed for images and signals to point clouds and radar returns
- Classifying radar returns including micro-Doppler signatures
Related Products
Learn More
Featured Product
Lidar Toolbox
Up Next:
Related Videos:
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)