Partial Differential Equation Toolbox™ には、有限要素解析を使用して、構造力学、熱伝達、一般的な偏微分方程式 (PDE) を解くための関数が用意されています。
線形静的解析を実行して、変形、応力、ひずみを計算できます。構造力学と振動をモデル化するために、ツールボックスで直接時間積分ソルバーが提供されています。モード解析を実行して固有振動数とモード形状を求めることで、コンポーネントの構造特性を解析できます。熱伝導が優位な熱伝達の問題をモデル化して、表面の温度分布、熱流束、熱流量率を計算できます。静電気解析および静磁気解析の実行に加え、カスタム PDE を使用した他の標準的な問題も解くことができます。
Partial Differential Equation Toolbox を使用すると、STL またはメッシュデータから 2D および 3D のジオメトリをインポートできます。三角形要素と四面体要素を持つメッシュを自動的に生成できます。有限要素法を使用して PDE を解き、結果を後処理して調査および解析できます。
詳細を見る:
モード解析と周波数応答解析
固有振動とモード形状を求めて、潜在的な共振を特定して防止し、その周波数応答を使用して構造の動的挙動をシミュレーションします。
過渡熱解析
低次元化されたモデルを用いて、時間とともに変動する熱負荷の下での温度分布とその他の熱特性、および動的特性の近似を求めます。
連成熱応力解析
熱負荷と機械的負荷が結合した状態での機械的動作を解析します。
ジオメトリのインポート/作成
インポートした STL またはメッシュデータから 2D および 3D のジオメトリを再構築するか、ジオメトリのプリミティブを使用してパラメーター化された単純な形状を作成します。
メッシュの生成
2D の三角形要素と 3D の四面体要素を使用して、有限要素メッシュを生成します。メッシュの品質を検査して解析し、結果の精度を評価します。
ソリューションのプロットとアニメーション化
強力な MATLAB グラフィックスを活用して、ジオメトリ、メッシュ、結果、派生および内挿された数量のプロットとアニメーションを作成することで、モデルとソリューションを可視化します。複数のサブプロットを作成し、プロットのプロパティを簡単にカスタマイズします。
後処理
メッシュノードやその他の内挿された場所で、ソリューションとその勾配を解析します。Statistics and Machine Learning Toolbox と Optimization Toolboxを使用して、追加の統計的な後処理とデータ解析を行うために、MATLAB の広範な機能を活用します。
FEA ワークフロー
MATLAB で一般的な FEA ワークフロー (ジオメトリをインポートまたは作成して、メッシュを生成し、荷重条件、境界条件、初期条件で物理的現象を定義し、求解して結果を可視化) の作成を 1 つのユーザーインターフェイスから行うことができます。
- MATLAB® 言語を使用して FEA シミュレーションを自動化し、Parallel Computing Toolbox™ を活用してシミュレーションの実行速度を向上させます。
- Simscape™ Multibody™ などの他の MATLAB 製品や Simulink® と統合し、エンドツーエンドのワークフローを構築
- MATLAB Compiler™ と App Designer をスタンドアロン アプリケーションまたは Web アプリとして使用し、カスタム アプリケーションを共有