Non-crossing polynomial quantile regression
ncquantreg finds the coefficients of a polynomial p(x) of degree n that fits the data in vector x to the quantiles tau of y.
ncquantreg(x,y) performs median regression (tau = 0.5) using a polynomial of degree n=1.
ncquantreg(x,y,n,tau) fits numel(tau) polynomials with degree n. The algorithm uses a stepwise multiple quantile regression estimation using non-crossing constraints (Wu and Liu, 2009). The approach is stepwise in a sense that a quantile function is estimated so that it does not cross with a function fitted in a previous step. The algorithm starts from the middle quantile (i.e. the one closest to 0.5) and than progressivly works through the quantiles with increasing distance from the middle.
ncquantreg(x,y,n,tau,pn,pv,...) takes several parameter name value pairs that control the algorithm and plotting.
Reference
Wu, Y., Liu, Y., 2009. Stepwise multiple quantile regression estimation using non-crossing constraints. Statistics and its Interface 2, 299–310.
引用
Wolfgang Schwanghart (2024). Non-crossing polynomial quantile regression (https://github.com/wschwanghart/ncquantreg), GitHub. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox > Regression > Linear Regression >
- MATLAB > Mathematics > Elementary Math > Polynomials >
タグ
謝辞
ヒントを得たファイル: quantreg(x,y,tau,order,Nboot)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!GitHub の既定のブランチを使用するバージョンはダウンロードできません
バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.1.0.0 | Changed title |
|
|
1.0.0.0 |