quantreg(x,y,tau,order,Nboot)
Quantile Regression
USAGE: [p,stats]=quantreg(x,y,tau[,order,nboot]);
INPUTS:
x,y: data that is fitted. (x and y should be columns)
Note: that if x is a matrix with several columns then multiple
linear regression is used and the "order" argument is not used.
tau: quantile used in regression.
order: polynomial order. (default=1)
nboot: number of bootstrap surrogates used in statistical inference.(default=200)
stats is a structure with the following fields:
.pse: standard error on p. (not independent)
.pboot: the bootstrapped polynomial coefficients.
.yfitci: 95% confidence interval on polyval(p,x)
Note: uses bootstrap on residuals for statistical inference. (see help bootstrp)
check also: http://www.econ.uiuc.edu/~roger/research/intro/rq.pdf
EXAMPLE:
x=(1:1000)';
y=randn(size(x)).*(1+x/300)+(x/300).^2;
[p,stats]=quantreg(x,y,.9,2);
plot(x,y,x,polyval(p,x),x,stats.yfitci,'k:')
legend('data','2nd order 90th percentile fit','95% confidence interval','location','best')
For references on the method check e.g. and refs therein:
http://www.econ.uiuc.edu/~roger/research/rq/QRJEP.pdf
Copyright (C) 2008, Aslak Grinsted
引用
Aslak Grinsted (2024). quantreg(x,y,tau,order,Nboot) (https://www.mathworks.com/matlabcentral/fileexchange/32115-quantreg-x-y-tau-order-nboot), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox > Regression >
- Mathematics and Optimization > Optimization Toolbox > Quadratic Programming and Cone Programming >
タグ
謝辞
ヒントを与えたファイル: Non-crossing polynomial quantile regression
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!