Problem 45249. Frugal number
check whether n is a frugal number
- a frugal number is a natural number in a given number base that has more digits than the number of digits in its prime factorization in the given number base
Solution Stats
Problem Comments
-
3 Comments
I'm confused. My solution followed the definition of frugal numbers from https://en.wikipedia.org/wiki/Frugal_number, which includes counting the number of digits in the exponents, and also checks frugality in other bases (not just base 10). But most solutions don't follow this. Can you clarify this?
It seems that the problem is not considering the exponent 1 as a valid digit, For instance, 115248 (6 digits) is called a frugal number in this problem since 115248 (6 digits) > 2^4*3*7^4 (5 digits). If we considered 3^1 as 2 digits instead of the 1-digit 3, 115248 should not be frugal. And the problem should have probably declared this restriction and that the considered base is 10.
PS: The OEIS also imposes this same restriction https://oeis.org/A046759, since 3645 is considered frugal: 3^6*5 instead of 3^6*5^1.
I recommend including the number 414720 to the test suite: 3^4*2^10*5.
Solution Comments
Show commentsGroup

Number theory
- 44 Problems
- 21 Finishers
- Pseudo-vampire number
- Pell numbers
- Frugal number
- Be happy
- Bell Triangle
- find nth even fibonacci number
- Cantor counting
- check whether a number is a pentatope number
- generate nth pentatope number
- Fangs of a vampire number
- Find all vampire fangs
- Balanced number
- Mandelbrot Numbers
- Parasitic numbers
- Woodall number
- Kaprekar numbers
- Project Euler: Problem 4, Palindromic numbers
- Fangs of pseudo-vampire number
- Project Euler: Problem 9, Pythagorean numbers
- Mersenne Primes
- Sophie Germain prime
- Determine if input is a Narcissistic number
- Determine if input is a perfect number
- Ordinal numbers
- Lychrel Number Test (Inspired by Project Euler Problem 55)
- Circular Primes (based on Project Euler, problem 35)
- Largest Twin Primes
- Golomb's self-describing sequence (based on Euler 341)
- Is it an Armstrong number?
- Champernowne Constant
- Last non-zero digit
- Generate a Parasitic Number
- Smith numbers
- Evil Number
- Armstrong Number
- Polite numbers. Politeness.
- Polite numbers. N-th polite number.
- Narcissistic number ?
- Is this number Munchhausen?
- P-smooth numbers
- Iccanobif numbers 1
- Amicable numbers
- Extra safe primes
- Pentagonal Numbers
Problem Recent Solvers46
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!