Problem 2595. Polite numbers. Politeness.
A polite number is an integer that sums of two or more consecutive positive integers. Politeness of a positive integer is a number of nontrivial ways to write n as a sum of two or more consecutive positive integers.
For example 9 = 4+5 = 2+3+4 and politeness of 9 is 2.
Given N return politeness of N.
See also 2593
Solution Stats
Problem Comments
-
5 Comments
An interesting problem, enough so that I chose to solve it in three essentially different ways. As always, there are various ways to solve any problem. The first two ways were essentially constructive, so counting the set of solutions for any N. The last used a formulaic approach.
Politeness is an integer sequence defined at https://oeis.org/A069283.
@Dyuman Joshi: I do not know why that error occurs. I do know that it essentially means that the user needs to wait and re-submit their solution at a later time, sometimes the next day.
By the way, it's best to not post solutions (or solution attempts) in comments. Questions or comments specific to a solution can be posted in a comment tied to said solution or solution attempt.
Solution Comments
Show commentsGroup

Number theory
- 44 Problems
- 21 Finishers
- Pseudo-vampire number
- Pell numbers
- Frugal number
- Be happy
- Bell Triangle
- find nth even fibonacci number
- Cantor counting
- check whether a number is a pentatope number
- generate nth pentatope number
- Fangs of a vampire number
- Find all vampire fangs
- Balanced number
- Mandelbrot Numbers
- Parasitic numbers
- Woodall number
- Kaprekar numbers
- Project Euler: Problem 4, Palindromic numbers
- Fangs of pseudo-vampire number
- Project Euler: Problem 9, Pythagorean numbers
- Mersenne Primes
- Sophie Germain prime
- Determine if input is a Narcissistic number
- Determine if input is a perfect number
- Ordinal numbers
- Lychrel Number Test (Inspired by Project Euler Problem 55)
- Circular Primes (based on Project Euler, problem 35)
- Largest Twin Primes
- Golomb's self-describing sequence (based on Euler 341)
- Is it an Armstrong number?
- Champernowne Constant
- Last non-zero digit
- Generate a Parasitic Number
- Smith numbers
- Evil Number
- Armstrong Number
- Polite numbers. Politeness.
- Polite numbers. N-th polite number.
- Narcissistic number ?
- Is this number Munchhausen?
- P-smooth numbers
- Iccanobif numbers 1
- Amicable numbers
- Extra safe primes
- Pentagonal Numbers
Problem Recent Solvers175
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!