Accelerate nested bsxfun double loop?

20 ビュー (過去 30 日間)
andrej
andrej 2013 年 10 月 7 日
編集済み: Matt J 2013 年 10 月 8 日
I have a simple double loop that requires multiple 'repmat' tasks in each iteration. I'm currently using bsxfun to avoid repmats, but have found it to be only a little faster than repmat/elementwise multiplication.
Any suggestions on speeding this up?
n = 200;
U = rand(n);
M = zeros(n); % preallocate matrix
a = rand(1,n);
b = rand(1,n);
SZI = bsxfun(@times,a,b');
for j = 1 : n
j
for i = 1 : n
if i ~= j
plusvec = U(j,:).^2 - U(i,:).*U(j,:);
timesvec = U(i,:) - U(j,:);
M(i,j) = sum(sum(SZI.*(bsxfun(@plus,bsxfun(@times,U,timesvec),plusvec))));
end
end
end

回答 (2 件)

Sean de Wolski
Sean de Wolski 2013 年 10 月 7 日
編集済み: Sean de Wolski 2013 年 10 月 7 日
Usually two dimensional:
bsxfun(@times
Can be replaced with matrix multiplication:
SZC = b'*a;
isequal(SZC,SZI)
ans =
1
More Being a fan of "ez" speedups, I turned the outer for-loop into a parfor-loop:
With two for-loops:
timeit(@()A89455(200),0)
ans =
6.3238
With the outer loop being a parfor-loop with four local workers:
timeit(@()A89455(200),0)
ans =
3.7519
A89455 is your code in a function taking n as an input.

Matt J
Matt J 2013 年 10 月 7 日
編集済み: Matt J 2013 年 10 月 8 日
Without loops:
tic;
a=a(:);
Ut=U.';
S=U*spdiags(a,0,n,n)*Ut;
S=bsxfun(@minus,diag(S).',S)*sum(b);
c=(b*U)*bsxfun(@times,Ut,a);
T=bsxfun(@minus,c(:),c);
M=S+T;
toc;
%Elapsed time is 0.002864 seconds.

カテゴリ

Help Center および File ExchangeLoops and Conditional Statements についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by