curve fit the function

14 ビュー (過去 30 日間)
Tawhid Pranto
Tawhid Pranto 2021 年 6 月 15 日
編集済み: dpb 2021 年 6 月 15 日
I am trying to curve fit the following equation with parameters d, D, Ar, Tr each of them bounded in some range. The physical constants are: gamma = 26.76E7, n = 6.59E28, Ad = 2.099E-20
The equation is broken into several parts -
w1=2*pi*x
z1=(2*w1*d^2/D)^0.5
w2=2*w1
z2=(2*w2*d^2/D)^0.5
J1=((1+5*z1/8+z1^2/8)/(1+z1+z1^2/2+z1^3/6+z1^5/81+z1^6/648))
J2=((1+5*z2/8+z2^2/8)/(1+z2+z2^2/2+z2^3/6+z2^5/81+z2^6/648))
R1_diff = Ad*(J1+4*J2)/(d*D)
R1_rot = Ar*(Tr/(1+w1^2*Tr^2)+4*Tr/(1+(w2)^2*Tr^2))
R1_IL = R1_diff + R1_rot
finally
return R1_IL
#Experimental x and y data points
xData = [2.00E+07,1.42E+07,1.01E+07,7.16E+06,5.09E+06,3.61E+06,2.57E+06,1.82E+06, ...
1.29E+06,9.20E+05,6.53E+05,4.63E+05,3.29E+05,2.34E+05,1.66E+05,1.18E+05, ...
8.39E+04,5.96E+04,4.24E+04,3.00E+04];
yData = [1.90E+01,2.11E+01,2.38E+01,2.66E+01,2.97E+01,3.26E+01,3.46E+01,3.70E+01, ...
3.84E+01,4.00E+01,4.12E+01,4.22E+01,4.33E+01,4.39E+01,4.48E+01,4.54E+01, ...
4.65E+01,4.64E+01,4.67E+01,4.67E+01];
and the bound parameters are
d = [2.00E-10, 3.5E-10], D = [3.0E-12, 4.00E-12], Ar = [3.00E9, 3.8E9], Tr = [5.00E-19, 6.9E-10]ll
I need to get the parameter values that will minimize the function and curve fit the plot of R1 vs x in loglog scale.
  1 件のコメント
dpb
dpb 2021 年 6 月 15 日
編集済み: dpb 2021 年 6 月 15 日
Reformatted Q? data/code so somebody can download easily -- dpb

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear and Nonlinear Regression についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by