expm function problem for stiff matrix

4 ビュー (過去 30 日間)
Michal
Michal 2021 年 6 月 10 日
回答済み: Noorolhuda wyal 2022 年 11 月 22 日
For very specific matrix A:
a = -1e20;
b = eps;
c = 1;
A = [a,0,b;0,c,0;-b,0,a];
disp('A:'), disp(num2str(A))
A:
-1e+20 0 2.220446049250313e-16
0 1 0
-2.220446049250313e-16 0 -1e+20
is known exact matrix exponential as:
expA = exp(a)*( ...
[1,0,0;0,0,0;0,0,1]*cos(b)+ ...
[0,0,1;0,0,0;-1,0,0]*sin(b))+ ...
[0,0,0;0,exp(c),0;0,0,0];
expA =
0 0 0
0 2.7183 0
0 0 0
the Matlab function expm give wrong result:
expm(A)
ans =
0 0 0
0 1 0
0 0 0
but direct computing of expm(A) via definition gives again right result:
[V,D] = eig(A);
expmA = V*diag(exp(diag(D)))/V
expmA =
0 0 0
0 2.7183 0
0 0 0
So, what is wrong with expm function? Bad implementation of Pade's approximation?
  5 件のコメント
Matt J
Matt J 2021 年 6 月 10 日
If they are linear ODEs, maybe you could solve them symbolically?
Michal
Michal 2021 年 6 月 10 日
Symbolic solutions always ends on matrix exponentials and integration, which must be finally evaluated always numerically, so in this case by multi-precision arithmetic, which is sometimes very slow (especially with VPA in MATLAB). So, this problem is really hard ... :)

サインインしてコメントする。

採用された回答

Shadaab Siddiqie
Shadaab Siddiqie 2021 年 6 月 18 日
From my understanding you are getting wrong result for certain cases wile using expm function. This issue has been forwarded to the development team for further investigation.
  1 件のコメント
Michal
Michal 2021 年 6 月 18 日
OK ... great! I am looking forward for any news regarding this topic.

サインインしてコメントする。

その他の回答 (2 件)

Bobby Cheng
Bobby Cheng 2021 年 8 月 12 日
This is a weakness of the scaling and squaring algorithm. Inside EXPM, which you can read the implementation, there are special treatments for diagonal to deal with extreme cases, but it is only triggered if the input is of the Schur form due to performance. You can call SCHUR to create the Schur factorization, and pass the Schur form to EXPM to trigger the special diagonal treatment.
>> a = -1e20;
>> b = eps;
>> c = 1;
>> A = [a,0,b;0,c,0;-b,0,a];
>> [Q T] = schur(A);
>> Q*expm(T)*Q'
ans =
0 0 0
0 2.7183 0
0 0 0
  1 件のコメント
Fangcheng Huang
Fangcheng Huang 2022 年 6 月 1 日
編集済み: Fangcheng Huang 2022 年 6 月 1 日
last line, Strange, when use matlab2022 it is right, but when use matlab 2020a, need to change Q*diag(exp(diag(T)))*Q'

サインインしてコメントする。


Noorolhuda wyal
Noorolhuda wyal 2022 年 11 月 22 日
a = -1e20;
b = eps;
c = 1;
A = [a,0,b;0,c,0;-b,0,a];
B=vpa(A);
expmA=expm(B)
expmA = 

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

タグ

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by