using a function that is similar to polyfit but with two linear terms
4 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I am looking for a matlab function that is working similar to polyfit, but where I can use two different input function but instead of having just one linear term, I need two. At the moment the regression looks as follows:
y=b0+b1*x+error
and the code to compute R^2 is the following:
x= changePriceWithoutNaN;
y=changeFWithoutNaN;
p = polyfit(x,y,1);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
yfit = polyval(p,x);
yfit = p(1) * x + p(2);
yresid = y - yfit;
SSresid = sum(yresid.^2);
SStotal = (length(y)-1) * var(y);
rsq_full = 1 - SSresid/SStotal
Instead of having just one linear term, the term I am looking for is the following:
y=b0+b1*x+b2*z+error
Is there anybody how knows a function that is solving a least squared optimazation in the way to coe above does? Importat is that I do not look for a quadratic solution and therefore from what I can see polyfit(x,y,2) is not an option
1 件のコメント
採用された回答
Shashank Prasanna
2013 年 5 月 1 日
編集済み: Shashank Prasanna
2013 年 5 月 1 日
Locks, it seems like you are interested in multiple linear regression. If you have the stats toolbox you can use the REGRESS function to do that. If you don't then you can use a simple '\' as follows:
x = dataT(:,2);
%is the implied volatility
y = dataT(:,10);
z = dataT(:,15);
p = [x z ones(length(dataT))]\y
p will have the 3 coeff you desire. We are essentially solving a linear system in a least square sense.
11 件のコメント
Shashank Prasanna
2013 年 5 月 3 日
It is indeed in the documentation, please go through it closely. This will help you find things later yourself :
and the answer is already in your code, I encourage you to take a closer look.
Hint:
tstat = mdl.Coefficients.tStat
Once again, please go through the documentation, fundamentally, all properties can be accessed with the '.' dot notation from your model.
その他の回答 (1 件)
Matt J
2013 年 4 月 29 日
There are several multi-dimensional polynomial fitters on the FEX, e.g.,
4 件のコメント
Matt J
2013 年 5 月 2 日
As said, the regression must stay linear, I do not want any quadratic components
And as I keep telling you, if you want to have only linear terms, then tell that to polyfitn:
p = polyfitn([x,y],z,1);
参考
カテゴリ
Help Center および File Exchange で Linear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!