Trouble finding solution of unknown variable in difficult integration problem

3 ビュー (過去 30 日間)
I am trying to solve for 'h' using the first equation above. My script produces a result, however it is unexpected. The solution of 'h' should increase with 's', yet this is not the case. I have attached the script below, any help would be much appreciated.
clc; clear all; close all;
%%%%%%%%%% Physical Parameters %%%%%%%%%%
r=0.1;
b=0.15;
W=60;
Kc=0.99*1000;
Kphi=1528.4*1000;
n=1.1;
c=1.04*1000;
phi=28;
A1=(Kc/b+Kphi);
k=0.6;
Beta=0.0872665;
kx=0.043*Beta+0.036;
%%%%%%%%%% Defining equations %%%%%%%%%%
s=1
syms h
syms Pheta
PhetaF=acos(1-h/r);
PhetaR=acos(1-k*h/r);
jx=r*(PhetaF-Pheta-(1-s)*(sin(PhetaF)-sin(Pheta)));
Sig=A1*r^n*(cos(Pheta)-cos(PhetaF));
Taux=(c+Sig*tand(phi))*(1-exp(-jx/kx));
%%%%%%%%%% Solving for h %%%%%%%%%%
fun=Taux*sin(Pheta)+Sig*cos(Pheta);
eqn=W==r*b*vpaintegral(fun,Pheta,[PhetaR,PhetaF]);
sol=vpasolve(eqn,h,.1)

採用された回答

Alan Stevens
Alan Stevens 2021 年 1 月 30 日
I used a different approach - see below. I could only see an increase in h, with increasing s, as a step change around s = 4.5.
s = 1:0.1:10;
h0 = 0.1; % Use h0 = 0.15 to get a different set of results.
for i = 1:numel(s)
h(i) = fzero(@(h) Zfun(h,s(i)), h0);
end
plot(s,h,'o'),grid
xlabel('s'),ylabel('h')
legend(['initial guess h0 = ' num2str(h0)])
disp(h)
function Z = Zfun(h,s)
r=0.1;
n=1.1;
rn = r^n;
b=0.15;
W=60;
Kc=0.99*1000;
Kphi=1528.4*1000;
k = 0.6;
c=1.04*1000;
tanphi=tand(28);
Beta=0.0872665;
kx=0.043*Beta+0.036;
sigA = (Kc/b+Kphi)*rn;
thetar = acos(1-k*h/r);
thetaf = acos(1-h/r);
sig = @(theta) sigA*(cos(theta) - cos(thetaf));
jx = @(theta) r*(thetaf - theta - (1-s)*(sin(thetaf) - sin(theta)));
taux = @(theta) (c + sig(theta).*tanphi).*(1 - exp(-jx(theta)/kx));
kern = @(theta) taux(theta).*sin(theta) + sig(theta).*cos(theta);
Z = r*b*integral(kern,thetar,thetaf) - W;
end
This results in
  5 件のコメント
Alan Stevens
Alan Stevens 2021 年 1 月 31 日
Ok. Assuming you want the original values of h, then you can do the following:
s = 1:0.1:10;
h0 = 0.1; % Use h0 = 0.15 to get a different set of results.
for i = 1:numel(s)
h(i) = fzero(@(h) Zfun(h,s(i)), h0);
Fx(i) = integralfunction2(h(i),s(i));
end
plot(s,h,'o'),grid
xlabel('s'),ylabel('h')
legend(['initial guess h0 = ' num2str(h0)])
%disp(h)
figure
subplot(2,1,1)
plot(h,Fx,'o'),grid
xlabel('h'),ylabel('Fx')
subplot(2,1,2)
plot(s,Fx,'o'),grid
xlabel('s'),ylabel('Fx')
function Z = Zfun(h,s)
W=60;
Z = integralfunction(h,s) - W;
end
function Irb = integralfunction(h,s)
r=0.1;
n=1.1;
rn = r^n;
b=0.15;
Kc=0.99*1000;
Kphi=1528.4*1000;
k = 0.6;
c=1.04*1000;
tanphi=tand(28);
Beta=0.0872665;
kx=0.043*Beta+0.036;
sigA = (Kc/b+Kphi)*rn;
thetar = acos(1-k*h/r);
thetaf = acos(1-h/r);
sig = @(theta) sigA*(cos(theta) - cos(thetaf));
jx = @(theta) r*(thetaf - theta - (1-s)*(sin(thetaf) - sin(theta)));
taux = @(theta) (c + sig(theta).*tanphi).*(1 - exp(-jx(theta)/kx));
kern = @(theta) taux(theta).*sin(theta) + sig(theta).*cos(theta);
Irb = r*b*integral(kern,thetar,thetaf);
end
function Irb2 = integralfunction2(h,s)
r=0.1;
n=1.1;
rn = r^n;
b=0.15;
Kc=0.99*1000;
Kphi=1528.4*1000;
k = 0.6;
c=1.04*1000;
tanphi=tand(28);
Beta=0.0872665;
kx=0.043*Beta+0.036;
sigA = (Kc/b+Kphi)*rn;
thetar = acos(1-k*h/r);
thetaf = acos(1-h/r);
sig1 = @(theta) sigA*(cos(theta) - cos(thetaf));
jx = @(theta) r*(thetaf - theta - (1-s)*(sin(thetaf) - sin(theta)));
taux1 = @(theta) (c + sig1(theta).*tanphi).*(1 - exp(-jx(theta)/kx));
kern1 = @(theta) taux1(theta).*cos(theta)-sig1(theta).*cos(theta);
Irb2 = r*b*integral(kern1,thetar,thetaf);
end
Louis McDermott
Louis McDermott 2021 年 1 月 31 日
Yes, this is perfect thank you!

サインインしてコメントする。

その他の回答 (1 件)

Alex Sha
Alex Sha 2021 年 1 月 30 日
Hi, there are two solutions as below:
1: h=0.073660616949704
2: h=0.165217787421255
  2 件のコメント
Louis McDermott
Louis McDermott 2021 年 1 月 30 日
How did you find this?
Alex Sha
Alex Sha 2021 年 1 月 31 日
If give s form 1 to 4, there will be two set of solutions, however, both of them, 'h' will decrease with 's':
solution 1:
s h
1 0.073660616949704
1.5 0.0711236790825779
2 0.0690063620895268
2.5 0.0672422418190603
3 0.0657674528467493
3.5 0.0645275378178806
4 0.0634782731873953
Solution 2:
s h
1 0.165217787441994
1.5 0.156485557183266
2 0.14921049827769
2.5 0.143711115798623
3 0.139599112575786
3.5 0.136470016301514
4 0.134031387697928

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by