Why is the resulting time-domain curve from Euler method and ode45 not stable?
6 ビュー (過去 30 日間)
古いコメントを表示
I am writing a program to obtain the solution of an undamped free vibration system. At first, I used the Euler method and the resulting time-domain curve seemed normal (perfectly sinusoidal with the initial displacement as the amplitude). But when I checked the peaks using findpeaks, its value increased continuously (0.1, 0.1001, 0.1002, and so on). Then, I used the ode45 to do the same. The peaks of the time-domain curve decreased continuously from the initial displacement (0.1, 0.0999, 0.0998, and so on). Why is this happening? Am I doing something wrong?
2 件のコメント
採用された回答
Mischa Kim
2021 年 1 月 13 日
Hi Ni Made Ayu Sinta Dewi, there is nothing you are doing wrong. What you are seeing is expected behavior. This is because you are using a numerical solver (e.g. ode45) to solve the differential equation. Numerical solutions are not exact solutions, they are only approximations. However, you have some control regarding the accuracy of the solution. E.g. you can set tolerance levels:
options = odeset('RelTol',1e-13); % the smaller the tolerance, the more accurate the result
[t,x] = ode45(@state_space,tspan,x0,options);
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!