Evaluation-Interpolation using FFT algorithm

2 ビュー (過去 30 日間)
chicken vector
chicken vector 2020 年 12 月 21 日
編集済み: chicken vector 2020 年 12 月 22 日
I'm trying to develop a FFT algorithm for evaluation-interpolation of polynomials.
I tried the simple function where the coefficients are expressed as but only the DFT seems to work. I've spent quite some time on this and I can't make it work. Any suggestions?
f = @(x) x^3;
Pf = [1 , 0 , 0 , 0];
yf = FFT(Pf,1);
y = FFT(yf,2)
function y = FFT(P,k)
% k = 1 -> DFT
% k = 2 -> IDFT
N = length(P);
omega = exp(2*pi*1i/N);
if k == 1
l = 1;
p = 1;
elseif k == 2
l = 1/N;
p = -1;
end
if N == 1
y = P;
else
n = N/2;
P_e = P(2:2:end);
P_o = P(1:2:end);
y_e = FFT(P_e,k);
y_o = FFT(P_o,k);
y = zeros(N,1);
for j = 1 : N/2
y(j) = y_e(j) + (l*omega^(p*(j-1)))*y_o(j);
y(j+n) = y_e(j) - (l*omega^(p*(j-1)))*y_o(j);
end
end
end
  1 件のコメント
chicken vector
chicken vector 2020 年 12 月 22 日
編集済み: chicken vector 2020 年 12 月 22 日
For anyone having the same problem, below there's the fixed code for IFFT. I'm having some issues on dividing by N inside the recursive function, so it is done outside.
P = [%vector of the evaluations];
N = length(P);
y = IFFT(P)/N;
function y = IFFT(P)
% This works only if N = 2^k
N = length(P);
n = N/2;
omega = exp(-2*pi*1i/N);
if N == 1
y = P;
else
P_e = P(1:2:end);
P_o = P(2:2:end);
y_e = IFFT(P_e);
y_o = IFFT(P_o);
y = zeros(N,1);
for j = 1 : n
y(j) = y_e(j) + omega^(j-1)*y_o(j);
y(j+n) = y_e(j) - omega^(j-1)*y_o(j);
end
end
end

サインインしてコメントする。

回答 (1 件)

Matt J
Matt J 2020 年 12 月 22 日
A highly impractical thing to do. If you know the coefficients of the polynomial, you should just use polyval().
However, if you must use FFT interpolation, then interpft() will readily do it,
  3 件のコメント
Matt J
Matt J 2020 年 12 月 22 日
Finding the roots of a 15th order polynomial can be highly unstable numerically, e.g.,
rTrue=sort((rand(1,15))*5);
coeffsTrue=poly(rTrue), %true coefficients
coeffsTrue = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
coeffs=coeffsTrue+[0,randn(1,15)]*1e-6*max(coeffsTrue), %add small errors to coefficients
coeffs = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
rTrue, %true roots
rTrue = 1×15
0.1598 0.4384 0.6582 1.3390 1.5456 1.7830 2.1863 2.2286 2.2790 2.6051 2.9448 3.0386 3.6676 4.1255 4.5711
r=sort(real( roots(coeffs) )).' %calculated roots
r = 1×15
0.1596 0.4403 0.6541 1.0277 1.0277 1.1391 1.1391 1.2642 1.2642 1.4859 1.4859 2.3075 2.3075 8.5793 8.5793
chicken vector
chicken vector 2020 年 12 月 22 日
I used 'roots' aswell and appears to have very good performances until now.
Thank you Matt for your help.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangePolynomials についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by