Hello everyone, I have a question in optimization

2 ビュー (過去 30 日間)
Ahmed Galal
Ahmed Galal 2020 年 11 月 16 日
コメント済み: Bruno Luong 2020 年 11 月 23 日
Please find the attached question
  3 件のコメント
Bruno Luong
Bruno Luong 2020 年 11 月 16 日
編集済み: Bruno Luong 2020 年 11 月 16 日
In this pdf: r_m c_m cannot be vectors since they are the bounds of the norms, which must be scalars.
Ahmed Galal
Ahmed Galal 2020 年 11 月 17 日
Sorry, they are not identical only the constraints are identical. The objective function is L1, L2, and Linf, not only L1. I did a mistake

サインインしてコメントする。

採用された回答

Bruno Luong
Bruno Luong 2020 年 11 月 16 日
編集済み: Bruno Luong 2020 年 11 月 17 日
The constraint (1c)
norm(R11*w+r00, Inf) >= rm
can be transformed as a union of 42 halfplanes
R11(i,:)*w+r00(i,:) >= rm
or
R11(i,:)*w+r00(i,:) <= -rm
for i=1,2,...21.
I would then suggest to solve 42 sub linear-programing problems by replacing the (1c) with one of those conditions. The sub problem can be solved with intlinprog, then we just take the argmin of those 42 problem solutions.
It must be more preditable and robust than GA.
  12 件のコメント
Matt J
Matt J 2020 年 11 月 23 日
編集済み: Matt J 2020 年 11 月 23 日
so no the gradient does not use parethesis like your.
OK, but they should do it that way, no? They missed the opportunity to take advantage of the special form of the problem.
Bruno Luong
Bruno Luong 2020 年 11 月 23 日
Does it really matter for accuracy? At the cost of 2 matrix-vector product per gradient evaluation instead of one?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Least Squares についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by