parfor problem (broadcast variable)
6 ビュー (過去 30 日間)
古いコメントを表示
Hi, I'm trying to use "parfor" in my MATLAB script.
It goes well without error, but It shows no significant speed boost compared to for loop.
And I got this warning message:
"the entire array ('A_Data' , 'A_ref') is a broadcast variable. This might result in unnecessary communication overhead."
How can I deal with this problem?
Note that:
A_Data: 1710203x5 double
A_ref: 5760x5 double
Please suggest the solutions.
% load 'A_Data' and 'A_ref' matrix
load dataq.mat
% preallocation ('theta' ,'b_ref')
k=length(A_ref);
theta=zeros(k,5);
b_ref=zeros(k,1);
% regression
poolobj = parpool(8);
parfor i=1:k
W = sqrt( ...
exp( ...
-( ...
( ( A_Data(:,2)-A_ref(i,2) ) / 0.6 ).^2+ ...
( ( A_Data(:,3)-A_ref(i,3) ) / 0.6 ).^2+ ...
( ( A_Data(:,4)-A_ref(i,4) ) / 0.6 ).^2+ ...
( ( A_Data(:,5)-A_ref(i,5) ) / 0.6 ).^2 ...
) /2 ...
) ...
);
theta(i,:)=regress(W.*b_Data,repmat(W,1,5).*A_Data);
b_ref(i,1)=A_ref(i,:)*theta(i,:)';
end
delete(poolobj);
0 件のコメント
回答 (1 件)
Matt J
2020 年 9 月 18 日
編集済み: Matt J
2020 年 9 月 18 日
There's never any gaurantee parfor will be faster, but I would modify the code as follows,
B_Data=A_Data(:,2:5)/(0.6*2);
B_ref=A_ref(:,2:5)/(0.6*2);
parfor i=1:k
W = exp(sum( -( B_Data-B_ref(i,:) ) ).^2 ,2) ;
theta(i,:)=regress(W.*b_Data,W.*A_Data);
end
b_ref=A_ref*theta.';
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Parallel Computing Fundamentals についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!