How to solve a non linear 3rd order differential equation

2 ビュー (過去 30 日間)
Sumedh Soman
Sumedh Soman 2020 年 7 月 4 日
コメント済み: darova 2020 年 7 月 5 日
Hi, I need to solve a 3rd order, non linear differential equation. I would preferably like a symbolic solution for the equation, as this equation is the input for another script. The equation is as follows:
where m is a constant (for my purposes, m =1)
f is a function of variable eta, and the initial conditions are as follows:
;
;
and
I tried using the code mentioned below, but it is unable to give me a symbolic solution. Can anybody please help me solve this problem?
m = 1;
syms f(eta)
Df = diff(f,eta);
D2f = diff(f,eta,2);
ode = diff(f,eta,3)+0.5*(m+1)*f*D2f+m*(1-Df^2) == 0;
cond1 = f(0) == 0;
cond2 = Df(0) == 0;
cond3 = D2f(10^100) == 1;
conds = [cond1 cond2 cond3];
uSol(eta) = dsolve(ode,conds)
  6 件のコメント
Sumedh Soman
Sumedh Soman 2020 年 7 月 4 日
this is the solver code I used:
xmesh = linspace(0,100,5);
solinit = bvpinit(xmesh, @guess);
sol = bvp4c(@bvpfcn, @bcfcn, solinit);
plot(sol.x, sol.y, '-o');
function dydx = bvpfcn(x,y) % equation to solve
dydx = zeros(3,1);
dydx = [y(2) y(3) (-((1+1)/2)*(y(3)*y(1))-1*(1-(y(2))^2))];
end
function res = bcfcn(ya,yb)
res = [ya(1) ya(2) yb(3)];
end
function g = guess(x)
g = [x 1 0];
end
I saw that y = x was a solution of this equation, which is why I have used it as guess(x)
darova
darova 2020 年 7 月 5 日
here are some corrections

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by