RLToolboxのGridWorldについて

10 ビュー (過去 30 日間)
shoki kobayashi
shoki kobayashi 2020 年 6 月 14 日
コメント済み: shoki kobayashi 2020 年 7 月 28 日
GridWorldをQ学習で解くのに困っています。
GridWorldを解くプログラミングを作ったのですが、Agentが上手に学習してくれないです
どのように改善すればよろしいでしょうか
%迷路の作成
GW = createGridWorld(8,8);
GW.CurrentState = '[2,1]';
GW.TerminalStates = '[8,8]';
GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[3,6]";"[3,7]";"[4,3]";"[7,3]";"[6,3]";"[5,3]"];
updateStateTranstionForObstacles(GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;
nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
GW.R(state2idx(GW,"[4,2]"),state2idx(GW,"[5,2]"),:) = 5;
GW.R(state2idx(GW,"[8,3]"),state2idx(GW,"[8,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;
%環境の読み込み
env = rlMDPEnv(GW)
env.ResetFcn = @() 2;
rng(0)
%Q学習
qTable = rlTable(getObservationInfo(env),getActionInfo(env));
qRepresentation = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));
qRepresentation.Options.LearnRate = 1;
agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
qAgent = rlQAgent(qRepresentation,agentOpts);
trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 101;
trainOpts.ScoreAveragingWindowLength = 30;
doTraining = false;
if doTraining
% Train the agent.
trainingStats = train(qAgent,env,trainOpts);
end
%結果の描画
plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;
sim(qAgent,env)

採用された回答

Kazuaki Yamada
Kazuaki Yamada 2020 年 7 月 28 日
次の通り変更すると学習しました.
12-13行目をコメントアウト
32行目のfalseをtrueに変更
%迷路の作成
GW = createGridWorld(8,8);
GW.CurrentState = '[2,1]';
GW.TerminalStates = '[8,8]';
GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[3,6]";"[3,7]";"[4,3]";"[7,3]";"[6,3]";"[5,3]"];
updateStateTranstionForObstacles(GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;
nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
%GW.R(state2idx(GW,"[4,2]"),state2idx(GW,"[5,2]"),:) = 5; %--- ?
%GW.R(state2idx(GW,"[8,3]"),state2idx(GW,"[8,4]"),:) = 5; %--- ?
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;
%環境の読み込み
env = rlMDPEnv(GW)
env.ResetFcn = @() 2;
rng(0)
%Q学習
qTable = rlTable(getObservationInfo(env),getActionInfo(env));
qRepresentation = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));
qRepresentation.Options.LearnRate = 1;
agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
qAgent = rlQAgent(qRepresentation,agentOpts);
trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 101;
trainOpts.ScoreAveragingWindowLength = 30;
doTraining = true; %--- trueにしないと以下のif文に入らない
if doTraining
% Train the agent.
trainingStats = train(qAgent,env,trainOpts);
end
%結果の描画
plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;
sim(qAgent,env)
  1 件のコメント
shoki kobayashi
shoki kobayashi 2020 年 7 月 28 日
実行してみると上手くいきました!
doTraining = true;
にしないとif文が実行されないんですね。。。
ありがとうございます!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDeep Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!