All possible combinations of 2 vectors.
4 ビュー (過去 30 日間)
古いコメントを表示
Hi everyone.
I have one vector and one number. For example [1 3 5] and 0.
How do I generate all possible combinations? Like this:
0 3 5
1 0 5
1 3 0
0 0 5
0 3 0
1 0 0
0 0 0
2 件のコメント
Matt Fig
2012 年 11 月 22 日
Why is the last row all zeros? It looks like the rule is: take at least one element from each vector, with repetition allowed only for the shorter vector. But then the last row breaks this. So what is the rule?
採用された回答
Matt Fig
2012 年 11 月 22 日
編集済み: Matt Fig
2012 年 11 月 23 日
Here is a solution:
function H = mycomb(V)
% Help
L = length(V);
H = cell(1,L);
for ii = 1:L-1
C = nchoosek(1:L,L-ii);
R = cumsum(ones(size(C)));
M = max(R(:,1));
H{ii} = zeros(M,L);
H{ii}(R+(C-1)*M) = V(C);
end
H{L} = zeros(1,L);
H = vertcat(H{:});
Now try it out from the command line:
>> mycomb([4 5 6])
ans =
4 5 0
4 0 6
0 5 6
4 0 0
0 5 0
0 0 6
0 0 0
>> mycomb([4 5 6 7])
ans =
4 5 6 0
4 5 0 7
4 0 6 7
0 5 6 7
4 5 0 0
4 0 6 0
4 0 0 7
0 5 6 0
0 5 0 7
0 0 6 7
4 0 0 0
0 5 0 0
0 0 6 0
0 0 0 7
0 0 0 0
0 件のコメント
その他の回答 (3 件)
Andrei Bobrov
2012 年 11 月 22 日
編集済み: Andrei Bobrov
2012 年 11 月 22 日
variant
t = [1 3 5];
ii = perms([t, zeros(size(t))]);
out = unique(sort(t(:,1:numel(t)),2),'rows');
or
t = [1 3 5];
out = [];
n = numel(t);
for jj = 1:n
k = nchoosek(t,n - jj);
out = [out;[zeros(size(k,1),jj),k]];
end
or
k = ones(1,numel(t)) * 2.^(numel(t)-1:-1:0)';
out = bsxfun(@times,t,dec2bin(0:k - 1,numel(t))-'0');
Azzi Abdelmalek
2012 年 11 月 22 日
編集済み: Azzi Abdelmalek
2012 年 11 月 23 日
save this function
function y=arrangement(v,n)
m=length(v);
y=zeros(m^n,n);
for k = 1:n
y(:,k) = repmat(reshape(repmat(v,m^(n-k),1),m*m^(n-k),1),m^(k-1),1);
end
then type
x=arrangement([1 3 5 0],3)
out=x(~all(x,2),:)
If you don't need repetition add
s=arrayfun(@(t) sort(out(t,:)),(1:size(out,1))','un',0)
out1=unique(cell2mat(s),'rows')
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Argument Definitions についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!