Calculation of the gradient of a function in BFGS Quasi-Newton Algorithm
3 ビュー (過去 30 日間)
古いコメントを表示
I have a function
that I want to minimize using the BFGS Quasi-Newton algorithm.
If
.
Also, A is given, B is not given, and C is a function of B only.
If I want to calculate to the gradient of the function (
). Should I calculate it with respect to all variables or with respect to B only?
0 件のコメント
採用された回答
Matt J
2020 年 5 月 27 日
With respect to all the variables that are unknown.
4 件のコメント
Matt J
2020 年 5 月 28 日
編集済み: Matt J
2020 年 5 月 29 日
It can be true. Or you can treat B and C as separate unknowns subject to an equality constraint,
C-g(B)=0
where g() is the function relating C to B. But it may make the optimization algorithm slower if it has to deal with additional variables and constraints.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Nonlinear Optimization についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!