How to speed up this code consisting of 6 nested FOR loops?
2 ビュー (過去 30 日間)
古いコメントを表示
Hi All,
I am trying to speed up the code below which consists of 6 nested FOR loops.
The purpose of this code is to fill a large, sparse matrix A with ones, and a large vector b with elements from a matrix dd of size TxTxN.
I have access to the Parallel Computing Toolbox, and ultimately this code will run on a cluster.
Any comments/suggestions would be greatly appreciated.
N= big number (e.g. 10000)
T=24;
A=sparse(N*T*(T+1)/2,(N-1)*T+T); %matrix to be filled
b=sparse(N*T*(T+1)/2,1); %vector to be filled
tempT = (T+1)*T/2; % constant used in the loop
for j=1:N
for t1=1:T
for t2=t1:T
for t3=1:t2-t1+1
rw = (j-1)*tempT + (t1-1)*(T-t1/2)+t2;
cl = (j-1)*T+t1-1+t3;
A(rw,cl) = 1;
for t4=t1:t2
for t5=t4:t2
b(rw) = b(rw) + dd(t4,t5,j); % dd is given, size(dd)=TxTxN
end
end
end
end
end
end
An earlier discussion on a simplified version of this with only 3 nested loops can be found here: http://www.mathworks.com/matlabcentral/answers/52005-how-to-transform-these-three-nested-for-loops-into-a-parfor-loop
8 件のコメント
採用された回答
Matt J
2012 年 10 月 30 日
編集済み: Matt J
2012 年 10 月 30 日
Here's one proposal,
N=1e4;
T=24;
%dd=rand(T,T,N); %fake
tempT = (T+1)*T/2;
[T1,T2,T3]=ndgrid(1:T,1:T,1:T);
idx = (T2>=T1) & (T3<=T2-T1+1);
T1=T1(idx);
T2=T2(idx);
T3=T3(idx);
nt=numel(T1);
%Make row/col data
RW=(T1-1).*(T-T1/2)+T2;
CL=T1-1+T3;
RW=bsxfun(@plus,RW,(0:N-1)*tempT);
CL=bsxfun(@plus,CL,(0:N-1)*T);
%For building b
Z=zeros(nt,T^2);
for ii=1:nt % A very small loop, no need to optimize
[T4,T5]=ndgrid(T1(ii):T2(ii),T1(ii):T2(ii));
idx=T5>=T4;
T4=T4(idx);
T5=T5(idx);
ind=sub2ind([T,T],T4,T5);
Z(ii,ind)=1;
end
ddd=Z*reshape(dd,[],N);
A=sparse(RW,CL,1, N*T*(T+1)/2,N*T);
b=sparse(RW(:),1,ddd(:),N*T*(T+1)/2,1);
4 件のコメント
Matt J
2012 年 11 月 1 日
The values I get for max(b1-b2) are tiny ones on the order of 1e-13. This is easily attributable to floating point precision issues. Remember, the two approaches are not adding up the numbers in the same order. Are you not getting similarly small values?
A stronger check is to look at the percent error, for which I also get tiny values:
>> percentError = full( sum(abs(b1-b2))/sum(abs(b1))*100 )
percentError =
2.5104e-14
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Number Theory についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!