Integral evaluation in an alphashape

4 ビュー (過去 30 日間)
berk can acikgoz
berk can acikgoz 2020 年 3 月 11 日
編集済み: Matt J 2020 年 3 月 12 日
I have an alphashape created by alphaShape function and an integral. Is there a way to evaluate this volume integral in the alpha shape? i.e. I have a function and I want to find the volume integral of this function in the shape defined by
x coordinates:
0
0.0107
0.0160
0.0101
y coordinates:
0
0
0
0.0106
z coordinates:
0
0.0101
0
0
  5 件のコメント
berk can acikgoz
berk can acikgoz 2020 年 3 月 12 日
It is actually a volume integral. Also it is a tetrahedral. I know how to integrate 3D but i dont want to since there are too many of these tetrahedrals and each time i will have to calculate the integration boundaries etc.
darova
darova 2020 年 3 月 12 日
What about triangulation?

サインインしてコメントする。

回答 (1 件)

Matt J
Matt J 2020 年 3 月 11 日
編集済み: Matt J 2020 年 3 月 11 日
Perhaps as follows. Here, shp refers to your alphaShape object.
fun=@(x,y,z) (x.^2+y.^2+z.^2).*shp.inShape(x,y,z);
range=num2cell( [min(shp.Points);max(shp.Points)] );
result=integral3(fun,range{:});
  7 件のコメント
berk can acikgoz
berk can acikgoz 2020 年 3 月 12 日
Integral is calculated allright. But it takes 182 seconds to evaluate the integral
Matt J
Matt J 2020 年 3 月 12 日
編集済み: Matt J 2020 年 3 月 12 日
If both versions give the same result, then go back to the first method (the fast one) and ignore the warnings.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeBounding Regions についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by