Row by column multiplication
14 ビュー (過去 30 日間)
古いコメントを表示
Consider two matrices A and B defined by
A=rand(10,3);
B=rand(3,10);
I'm interested in multiplying the vectors defined the first, second, and third rows in B by the vectors defined the first, second, and third columns in A, respectively. My intent is to generate ten, 3X3 matrices defined by
Matrix1= B(:,1)*A(1,:)
Matrix2= B(:,2)*A(2,:)
...
Matrix10= B(:,10)*A(10,:)
My initial thought was something like
B(:,1:10)*A(1:10,:)
but this approach populates the matrices B and A prior to multiplication, yielding a single 3X3 matrix. How to I change the "order-of-operations" if you will---call each vector on a term-by-term basis, multiplying in between each call to generate the desired matrix? Of course, I really want to avoid having to use for loops.
0 件のコメント
採用された回答
Matt J
2012 年 10 月 15 日
Here's a completely vectorized method, which requires James Tursa's MTIMESX function, available at the link below
A=reshape(A',1,3,10);
B=reshape(B,3,1,10);
C=mtimesx(B,A)
3 件のコメント
Amandeep Gautam
2015 年 10 月 22 日
I wonder if there is anything wrong with A' * B? Seems like it does the same thing. Can you comment?
Matt J
2015 年 10 月 22 日
That will generate an error
>> A=rand(10,3); B=rand(3,10); A'*B
Error using *
Inner matrix dimensions must agree.
その他の回答 (4 件)
Azzi Abdelmalek
2012 年 10 月 15 日
編集済み: Azzi Abdelmalek
2012 年 10 月 15 日
for k=1:10
matrix{k}=B(:,k)*A(k,:)
end
%or
for k=1:10
matrix(:,:,k)=B(:,k)*A(k,:)
end
0 件のコメント
Matt Fig
2012 年 10 月 15 日
編集済み: Matt Fig
2012 年 10 月 15 日
I think you can avoid FOR loops, but I see no reason to do so here:
A=randi(10,10,3);
B=randi(10,3,10);
for ii = 10:-1:1,C{ii} = B(:,ii)*A(ii,:);end
Here is a vectorization, but I can almost guarantee you it will be slower than the above FOR loop:
cellfun(@mtimes,mat2cell(B,3,ones(1,10)).',mat2cell(A,ones(1,10),3),'Un',0)
0 件のコメント
Matt J
2012 年 10 月 15 日
Here's a 1-liner. It's syntactically brief, but not superior to using loops directly,
C=cellfun(@(a,b) a(:)*b(:).', num2cell(B,1), num2cell(A,2).', 'uni',0)
0 件のコメント
Richard Brown
2012 年 10 月 15 日
編集済み: Richard Brown
2012 年 10 月 15 日
There is a built in way to do it quickly if you use sparse multiplication. Essentially, you construct the block diagonal matrix blkdiag(B(:, 1), ... , B(:, N)) directly, and multiply it by A to give Y = [B(:, 1)*A(1, :) ; ... ; B(:, N) * A(N, :)]
N = 10000;
A = rand(N, 3);
B = rand(3, N);
I = 1:3*N;
J = repmat(1:N, 3, 1);
Y = mat2cell(sparse(I, J, B) * A, repmat(3, N, 1), 3);
edit: brief explanation added
3 件のコメント
Richard Brown
2012 年 10 月 16 日
Well, it depends what precisely speaking we mean by "built in" doesn't it?! My definition is that if it comes with a basic MATLAB install it's builtin.
Also, the mat2cell call isn't necessary -- it's just to convert it to the output format in some of the other answers. And the code doesn't touch the branch of repmat that uses for loops. Poor old for loops, they get such a hard time here :)
参考
カテゴリ
Help Center および File Exchange で Logical についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!