現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
Inverse Laplace Transform for a complex transfer function
6 ビュー (過去 30 日間)
古いコメントを表示
For my signals project I was able to represent a system using a transfer function consisting of 50 zeros and 60 poles. However, when I tried to get the time domain function of this laplace domain impulse response using ilaplace() with the numerators and denominators as inputs, the code has been running for hours with no end.
I understand that due to the complexity of the transfer function matlab may not be able to find an exact answer. Is there a way to estimate or possible improve the identification of this time domain equation? Thank you
10 件のコメント
David Goodmanson
2019 年 12 月 11 日
Hi Darren,
do you mean that F(s) is entirely described by a ratio of polynomials and that you have the positions of all the zeros and poles?
Darren Tran
2019 年 12 月 11 日
Hi David,
Yes, all the poles and zeros have been found and F(s) is a ratio of polynomials. Is there a better way to find the inverse laplace?
Thank you for your time.
David Goodmanson
2019 年 12 月 11 日
Hi Darren,
what can you say about the locations of the poles in the s plane (all negative? all distinct? minimum spacing, etc)
Darren Tran
2019 年 12 月 11 日
Transfer function of system
% tf6 =
%
% From input "u1" to output "y1":
%
% -6.226e14 (+/- 1.801e23) s^50 - 1.406e16 (+/- 1.397e25) s^49 + 8.548e17 (+/- 1.196e27) s^48
%
% + 4.345e19 (+/- 7.827e28) s^47 + 9.782e20 (+/- 3.5e30) s^46 + 2.544e22 (
%
% +/- 1.269e32) s^45 + 5.779e23 (+/- 3.364e33) s^44 + 3.644e24 (+/- 6.743e34) s^43
%
% - 1.348e25 (+/- 1.047e36) s^42 - 2.659e26 (+/- 1.27e37) s^41 - 8.311e27 (
%
% +/- 1.188e38) s^40 - 6.417e28 (+/- 8.344e38) s^39 - 2.217e29 (+/- 4.219e39) s^38
%
% + 6.008e29 (+/- 1.462e40) s^37 - 6.462e29 (+/- 3.238e40) s^36 - 5.825e30 (
%
% +/- 4.437e40) s^35 + 1.03e29 (+/- 3.587e40) s^34 - 3.185e29 (+/- 1.619e40) s^33
%
% - 1.096e29 (+/- 5.946e39) s^32 + 9.797e27 (+/- 1.52e39) s^31 - 1.609e27 (
%
% +/- 3.429e38) s^30 + 1.159e25 (+/- 1.074e38) s^29 + 1.467e24 (+/- 2.715e37) s^28
%
% - 3.907e22 (+/- 4.977e36) s^27 - 1.293e21 (+/- 6.965e35) s^26 - 7.722e19 (
%
% +/- 7.773e34) s^25 + 2.404e18 (+/- 7.1e33) s^24 - 9.765e16 (+/- 5.451e32) s^23
%
% - 7.257e14 (+/- 3.5e31) s^22 - 4.564e13 (+/- 1.963e30) s^21 - 1.388e13 (
%
% +/- 8.909e28) s^20 - 2.323e11 (+/- 4.094e27) s^19 + 1.235e10 (+/- 1.583e26) s^18
%
% - 1.486e08 (+/- 7.64e24) s^17 + 1.401e07 (+/- 5.14e23) s^16 + 5.671e04 (
%
% +/- 1.497e22) s^15 + 2.435e04 (+/- 1.176e21) s^14 - 40.67 (+/- 2.494e19) s^13
%
% + 20.68 (+/- 1.543e18) s^12 + 0.6052 (+/- 3.44e16) s^11 - 0.009592 (+/- 1.484e15) s^10
%
% + 0.0003821 (+/- 4.398e13) s^9 + 4.003e-06 (+/- 1.474e12) s^8 - 6.035e-08 (
%
% +/- 3.966e10) s^7 + 2.338e-08 (+/- 9.562e08) s^6 - 5.411e-10 (+/- 1.838e07) s^5
%
% - 1.838e-11 (+/- 2.944e05) s^4 + 1.819e-13 (+/- 3599) s^3 + 2.949e-15 (+/
%
% - 33.09) s^2 + 1.31e-16 (+/- 0.1979) s - 2.658e-19 (+/- 0.0006273)
%
% -----------------------------------------------------------------------------------------------
%
% s^60 + 1.899e06 (+/- 1.357e14) s^59 + 1.639e09 (+/- 4.228e15) s^58 + 3.51e11 (+/
%
% - 5.578e17) s^57 + 4.653e13 (+/- 1.798e19) s^56 + 4.57e15 (+/- 6.798e20) s^55
%
% + 3.538e17 (+/- 2.246e22) s^54 + 2.217e19 (+/- 6.035e23) s^53 + 1.148e21 (
%
% +/- 3.098e25) s^52 + 4.983e22 (+/- 5.6e26) s^51 + 1.824e24 (+/- 2.159e28) s^50
%
% + 5.657e25 (+/- 2.839e29) s^49 + 1.487e27 (+/- 2.863e31) s^48 + 3.299e28 (
%
% +/- 9.496e32) s^47 + 6.138e29 (+/- 1.494e34) s^46 + 9.528e30 (+/- 5.066e35) s^45
%
% + 1.228e32 (+/- 6.374e36) s^44 + 1.298e33 (+/- 6.645e37) s^43 + 1.105e34 (
%
% +/- 3.778e38) s^42 + 7.44e34 (+/- 1.666e39) s^41 + 3.847e35 (+/- 4.62e39) s^40
%
% + 1.472e36 (+/- 1.406e40) s^39 + 3.955e36 (+/- 9.029e40) s^38 + 7.153e36 (
%
% +/- 2.322e41) s^37 + 8.251e36 (+/- 2.837e41) s^36 + 5.806e36 (+/- 3.443e41) s^35
%
% + 2.847e36 (+/- 4.663e40) s^34 + 1.043e36 (+/- 1.239e40) s^33 + 2.946e35 (
%
% +/- 6.114e39) s^32 + 6.593e34 (+/- 9.715e38) s^31 + 1.199e34 (+/- 3.931e38) s^30
%
% + 1.81e33 (+/- 4.698e37) s^29 + 2.308e32 (+/- 1.533e37) s^28 + 2.523e31 (
%
% +/- 1.646e36) s^27 + 2.395e30 (+/- 2.413e35) s^26 + 1.994e29 (+/- 8.35e34) s^25
%
% + 1.469e28 (+/- 1.041e34) s^24 + 9.641e26 (+/- 9.937e32) s^23 + 5.671e25 (
%
% +/- 7.081e31) s^22 + 3.003e24 (+/- 5.501e30) s^21 + 1.437e23 (+/- 1.657e29) s^20
%
% + 6.23e21 (+/- 8.191e27) s^19 + 2.451e20 (+/- 3.165e26) s^18 + 8.757e18 (
%
% +/- 2.724e25) s^17 + 2.843e17 (+/- 1.716e24) s^16 + 8.377e15 (+/- 2.829e22) s^15
%
% + 2.238e14 (+/- 1.025e21) s^14 + 5.405e12 (+/- 6.42e19) s^13 + 1.176e11 (
%
% +/- 3.507e18) s^12 + 2.296e09 (+/- 1.11e17) s^11 + 3.996e07 (+/- 3.805e15) s^10
%
% + 6.154e05 (+/- 2.567e14) s^9 + 8299 (+/- 1.338e13) s^8 + 96.76 (+/- 2.452e11) s^7
%
% + 0.9582 (+/- 1.675e10) s^6 + 0.007867 (+/- 6.701e08) s^5 + 5.172e-05 (+/
%
% - 1.53e07) s^4 + 2.58e-07 (+/- 1.609e06) s^3 + 8.936e-10 (+/- 3.073e04) s^2
%
% + 1.807e-12 (+/- 1041) s + 1.364e-15 (+/- 47.24)
Chuguang Pan
2019 年 12 月 11 日
Maybe a ratio of polynomials can be decomposed into partial fractions.
Darren Tran
2019 年 12 月 11 日
Hi Chuguang,
How would I be able to decompose the above transfer function into partial fractions?
Thank you for your time.
David Goodmanson
2019 年 12 月 11 日
編集済み: David Goodmanson
2019 年 12 月 11 日
Hi Darren,
There are not positions of poles and zeros here, just two polynomials with coefficients. Those coefficients all have values like -6.226e14 (+/- 1.801e23), meaning that they are of no use at all. You might want to consider how realistic it is to have a transfer function with 50 poles and 60 zeros. If you did know, accurately, the positions of all those poles and zeros then it's certainly possible to find the answer numericaly in short order, but there could well be big problems with numerical accuracy in such a calculation.
Walter Roberson
2019 年 12 月 11 日
-6.226e14 (+/- 1.801e23) is pretty much a nonsense number, with inprecision 1 billion times larger than the number itself.
Are these numbers coming from the output of cftool (Curve Fitting Toolbox) ?
Shashwat Bajpai
2019 年 12 月 26 日
I would be in a better state to help you if the coefficients mentioned are in a MATLAB executable format.
回答 (1 件)
Darren Tran
2019 年 12 月 30 日
Hello I have found the solution. The 50 poles 60 zeros method was wrong and I ended up using 2 zeroes and three poles. I then did an inverse laplace and found the original function. Than you everyone for you help.
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
