Minimizing one variable function with different parameters, time-efficient solution

5 ビュー (過去 30 日間)
gui_tech
gui_tech 2012 年 9 月 21 日
Hello,
I want to minimize a one variable function f(x) for different values of one parameter a. I found this solution:
function y=f(x,a)
y=abs(phi(x))+(x-a).^2; % phi is a differentiable function
end
-----------------
eps=0.2
for i=1:size(a,1)
xmin=fminbnd(@(x)f(x,a(i)),a(i)-eps,a(i)+eps); % we know the minimum is close to a
end
Vector a has more than 450000 values, so it takes an unacceptable computation time. Do you think there exists another more time-efficient solution?
Thank you in advance
  1 件のコメント
Babak
Babak 2012 年 9 月 24 日
Are you looking to find xmin which is the same size as a?
In other words, xmin in your for loop is over-writing itself.
My understanding from your question is that you are looking for a curve of xmin(a) that for different values of a, gives you minimum values of the function g(x) = f(x,a). Am I right?

サインインしてコメントする。

回答 (1 件)

Matt J
Matt J 2012 年 9 月 30 日
Do you expect xmin(i) to be close to xmin(i-1)? If so, you could do
eps=0.2;
xmin=nan(size(a)); %pre-allocate
xmin(1)=fminbnd(@(x)f(x,a(1)),a(1)-eps,a(1)+eps); %initialize
for i=2:size(a,1)
xmin(i)=fminsearch(@(x)f(x,a(i)),xmin(i-1));
end

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by