Mutliobjective optimization with linprogr
2 ビュー (過去 30 日間)
古いコメントを表示
I'm trying to solve a linear programming with two objectives. For one objective the code works pretty good using "linprog".
For two objectives, I already coded the weighted sum approach and it works well. However, I would like to use another scalarization approach, e.g., Tchebycheff or AASF. For nonlinear functions, "fmincon" works well, but with "linprog" I'm having troubles to code it, mainly because the objective function is represented as the coefficients of the function. Is there any other way to send "f" to "linprog" instead of a vector of coefficients ?
Here I put an example of how Tcehebycheff works for "fmincon":
function f = fun(x,z,A)
f1 = sum(x.^2,2);
f2 = 3*x(:,1) + 2*x(:,2) - x(:,3)/3 + 0.01*(x(:,4) - x(:,5)).^3;
f = max((f1 - z(1))*A(1), (f2 - z(2))*A(2));
% f = f1*A(1) + f2*A(2); % for weighted sum approach
end
where z is the ideal point, a vector of objectives in which each element is the best solution found for every objective up to now (for being used for evolutionary algorithms), a constant for the optimizer. Even if one does not use the z, I see difficult how to transfert the f to "linprog":
f = max(f1*A(1), f2*A(2));
It is to note again, that f is a vector of coefficients.
Thank you in advance.
0 件のコメント
採用された回答
Matt J
2019 年 9 月 26 日
編集済み: Matt J
2019 年 9 月 26 日
The easiest approach would be to use fminimax, but optimization performance might improve if you recast as a linear program as in the example below. Note that for nonlinear objectives, your approach using fmincon will not be reliable because the max() operation renders the objective non-differentiable (see Limitations of Fmincon). You should definitely use fminimax for that.
Aineq=[1,1]; bineq=1;
f1=[1,0.2]; %objective 1
f2=[2,0.1]; %objective 2
x=optimvar('x',numel(f1),'LowerBound',0);
t=optimvar('t');
prob=optimproblem('ObjectiveSense','minimize');
prob.Constraints.AbCon=(Aineq*x>=bineq);
prob.Constraints.tbound=t>=[f1;f2]*x;
prob.Objective=t;
sol=solve(prob);
sol.x
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!