Using ODE45 to solve two coupled second order ODEs

7 ビュー (過去 30 日間)
Ricardo Machado
Ricardo Machado 2019 年 8 月 25 日
回答済み: madhan ravi 2019 年 8 月 25 日
I used the ODE to vector field function to change my 2 coupled 2nd order ODEs to a system of 1st order ODEs.
syms k1 k2 m t x1(t) x2(t) Y
Dx1 = diff(x1);
D2x1 = diff(x1,2);
Dx2 = diff(x2);
D2x2 = diff(x2,2);
Eq1 = D2x1 == (-(k1+k2)*x1+(k2)*x2)/m
Eq2 = D2x2 == ((k2*x1)+((k1+k2)*x2))/m
[V,Subs] = odeToVectorField(Eq1, Eq2)
ftotal = matlabFunction(V, 'Vars',{t,Y,k1,k2,m})
It generated this
ftotal =
function_handle with value:
@(t,Y,k1,k2,m)[Y(2);((k1+k2).*Y(1)+k2.*Y(3))./m;Y(4);-((k1+k2).*Y(3)-k2.*Y(1))./m]
However, when I tried to use ODE45 to solve it, i got errors. The initial conditions are x(0)= (1 0)' and ẋ(0)= (0 0)'
tspan = [0 20];
y0 = [1 0; 0 0];
[T,Y] = ode45(ftotal,tspan,y0)
plot(T,Y)
grid
Any help would be appreciated.
Thank you
  1 件のコメント
madhan ravi
madhan ravi 2019 年 8 月 25 日
k1 , k2 and m values should be numeric.

サインインしてコメントする。

採用された回答

madhan ravi
madhan ravi 2019 年 8 月 25 日
syms x1(t) x2(t) k1 k2 m
Dx1 = diff(x1);
D2x1 = diff(x1,2);
Dx2 = diff(x2);
D2x2 = diff(x2,2);
Eq1 = D2x1 == (-(k1+k2)*x1+(k2)*x2)/m;
Eq2 = D2x2 == ((k2*x1)+((k1+k2)*x2))/m;
[V,Subs] = odeToVectorField(Eq1, Eq2);
ftotal = matlabFunction(V, 'Vars',{'t','Y','k1','k2','m'});
% ^-^ - single quotes
interval = [0 20];
y0 = [1 0; 0 0]; %initial conditions
% v-k2
ySol = ode45( @(t,Y)ftotal(t,Y,1,1,1),interval,y0);
% k1-^ m-^
tValues = linspace(interval(1),interval(2),1000);
yValues = deval(ySol,tValues,1); %number 1 denotes first solution likewise you can mention 2 ,3 & 4 for the next three solutions
plot(tValues,yValues)

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by