Coloring The Dots in biPlot Chart
17 ビュー (過去 30 日間)
古いコメントを表示
I have created biplot as below and I'm looking for a way to distinguish the dots by different colors according to their group name. There are 12 groups and here are mydata and codes.
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
figure(1)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure(3)
biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);
0 件のコメント
採用された回答
Adam Danz
2019 年 4 月 25 日
編集済み: Adam Danz
2019 年 4 月 25 日
The biplot() function has an output that lists handles to all objects in the plot. All you need to do is isolate the handles to the scatter points by referencing the handle tags and then assign color based on the category.
If you have any questions, feel free to leave a comment.
% Your code
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
% figure(1) (No need for this)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure()
% Store handle to biplot
h = biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);
% Identify each handle
hID = get(h, 'tag');
% Isolate handles to scatter points
hPt = h(strcmp(hID,'obsmarker'));
% Identify cluster groups
grp = findgroups(clusters); %r2015b or later - leave comment if you need an alternative
grp(isnan(grp)) = max(grp(~isnan(grp)))+1;
grpID = 1:max(grp);
% assign colors and legend display name
clrMap = lines(length(unique(grp))); % using 'lines' colormap
for i = 1:max(grp)
set(hPt(grp==i), 'Color', clrMap(i,:), 'DisplayName', sprintf('Cluster %d', grpID(i)))
end
% add legend to identify cluster
[~, unqIdx] = unique(grp);
legend(hPt(unqIdx))
You can select a different color map (I'm using 'lines'). : https://www.mathworks.com/help/matlab/ref/colormap.html#buc3wsn-1-map
11 件のコメント
Adam Danz
2020 年 11 月 29 日
You need to keep track of your random permutation indices and apply the same permutation to the species vector.
randIdx = randperm(size(iris, 1));
irisRandom = iris(randIdx, :);
species = species(randIdx);
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Data Distribution Plots についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!