The fastest way to check if a sparse matrix is singular or not?

11 ビュー (過去 30 日間)
Benson Gou
Benson Gou 2019 年 4 月 12 日
編集済み: Matt J 2019 年 4 月 13 日
Dear All,
For a large sparse matrix A, how can I check in a fastest way if matrix A is singluar or not? The matrix has a dimension of 6000 x 6000. I know lu is fast, but I need to repeat this calculations many times for different matrix A.
Thanks a lot in advance.
Beson

採用された回答

Matt J
Matt J 2019 年 4 月 12 日
  2 件のコメント
Benson Gou
Benson Gou 2019 年 4 月 13 日
@Matt. Thanks for your reply. But I think there must be a threshold to judge if martrix A is singular or not. How to decide the threshold? Thanks.
Matt J
Matt J 2019 年 4 月 13 日
編集済み: Matt J 2019 年 4 月 13 日
The condition number calculated by condest measures how much error magnification you get when you try to invert the matrix when solving a linear equation
The "threshold" that you are pursuing would be determined from the amount of error magnification that your specific application can tolerate (note that it is not possible to have zero error magnification). If the error magnification is greater than what you can tolerate, you would consider the matrix "singular".

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by