Failure in initial user-supplied objective function evaluation. FSOLVE cannot continue

3 ビュー (過去 30 日間)
My currenct script looks like this:
function m=F(x)
k11=x(1);
k12=x(2);
k13=x(3);
k14=x(4);
l=x(5);
f1(y1,y2,y3,y4,z1)=(-(z1^3)/(y3^2))*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10))-y4;
f2(y1,y2,y3,y4,z1)=1/10*z1-y4;
f3(y1,y2,y3,y4,z1)=(z1^3)*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10));
f4(y1,y2,y3,y4,z1)=y1-y3^(-1);
g(y1,y2,y3,y4,z1)=(y1-y3^(-1))^2+y4^2-1/10*z1;
J1(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],[y1,y2,y3,y4]);
J1=J1(2,2,1,0,10);
J2(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],[z1]);
J2=J2(2,2,1,0,10);
J3(y1,y2,y3,y4,z1)=jacobian([g],[y1,y2,y3,y4]);
J3=J3(2,2,1,0,10);
J4(y1,y2,y3,y4,z1)=jacobian([g],[z1]);
J4=J4(2,2,1,0,10);
k1=[k11;k12;k13;k14];
m(1)=f1(2,2,1,0,10)+0.44*(J1(1,:)*k1 +J2(1,:)*l)-k11;
m(2)=f2(2,2,1,0,10)+0.44*(J1(2,:)*k1 +J2(2,:)*l)-k12;
m(3)=f3(2,2,1,0,10)+0.44*(J1(3,:)*k1 +J2(3,:)*l)-k13;
m(4)=f4(2,2,1,0,10)+0.44*(J1(4,:)*k1 +J2(4,:)*l)-k14;
m(5)=g(2,2,1,0,10)+0.44*(J3*k1 +J4(1,:)*l);
end
x0=[1,1,1,1,1];
fsolve(@F,x0)
Still nothing seems to get this working, can anyone help me out?
Thanks in advance.
  4 件のコメント
Star Strider
Star Strider 2019 年 4 月 7 日
It’s difficult to understand what you‘re doing.
However, you need to avoid using symbolic variables in the function to use as your function argument to fsolve. Use the matlabFunction function to create a numeric function fsolve can use.
Mojtaba Mohareri
Mojtaba Mohareri 2019 年 4 月 7 日
編集済み: Mojtaba Mohareri 2019 年 4 月 7 日
Actually I want to solve a system of equations with 5 unknowns k11,k12,k13,k14,l11 defined by equations m(1),...m(5). I don't know how to do that.

サインインしてコメントする。

採用された回答

Stephan
Stephan 2019 年 4 月 7 日
Hi,
this runs - not sure if it is really efficient, but it works:
x0=[1,1,1,1,1];
fsolve(@F,x0)
function m=F(x)
syms y1 y2 y3 y4 z1 k11 k12 k13 k14 l11
h=1/1000;
f1(y1,y2,y3,y4,z1)=(-(z1^3)/(y3^2))*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10))-y4;
f2(y1,y2,y3,y4,z1)=1/10*z1-y4;
f3(y1,y2,y3,y4,z1)=(z1^3)*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10));
f4(y1,y2,y3,y4,z1)=y1-y3^(-1);
g(y1,y2,y3,y4,z1)=(y1-y3^(-1))^2+y4^2-1/10*z1;
J1(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],[y1,y2,y3,y4]);
J1=double(J1(2,2,1,0,10));
J2(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],z1);
J2=double(J2(2,2,1,0,10));
J3(y1,y2,y3,y4,z1)=jacobian(g,[y1,y2,y3,y4]);
J3=double(J3(2,2,1,0,10));
J4(y1,y2,y3,y4,z1)=jacobian(g,z1);
J4=double(J4(2,2,1,0,10));
k11=x(1);
k12=x(2);
k13=x(3);
k14=x(4);
l11=x(5);
k1=[k11;k12;k13;k14];
m(1)=double(h*(f1(2,2,1,0,10)+0.44*(J1(1,:)*k1 +J2(1,:)*l11))-k11);
m(2)=double(h*(f2(2,2,1,0,10)+0.44*(J1(2,:)*k1 +J2(2,:)*l11))-k12);
m(3)=double(h*(f3(2,2,1,0,10)+0.44*(J1(3,:)*k1 +J2(3,:)*l11))-k13);
m(4)=double(h*(f4(2,2,1,0,10)+0.44*(J1(4,:)*k1 +J2(4,:)*l11))-k14);
m(5)=double(g(2,2,1,0,10)+0.44*(J3*k1 +J4(1,:)*l11));
end
Best regards
Stephan
  2 件のコメント
Mojtaba Mohareri
Mojtaba Mohareri 2019 年 4 月 7 日
Yes, it worked. Thank you so much.
Stephan
Stephan 2019 年 4 月 7 日
Did you notice that you can accept and/or vote for useful answers

サインインしてコメントする。

その他の回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by