Failure in initial user-supplied objective function evaluation. FSOLVE cannot continue
3 ビュー (過去 30 日間)
古いコメントを表示
My currenct script looks like this:
function m=F(x)
k11=x(1);
k12=x(2);
k13=x(3);
k14=x(4);
l=x(5);
f1(y1,y2,y3,y4,z1)=(-(z1^3)/(y3^2))*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10))-y4;
f2(y1,y2,y3,y4,z1)=1/10*z1-y4;
f3(y1,y2,y3,y4,z1)=(z1^3)*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10));
f4(y1,y2,y3,y4,z1)=y1-y3^(-1);
g(y1,y2,y3,y4,z1)=(y1-y3^(-1))^2+y4^2-1/10*z1;
J1(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],[y1,y2,y3,y4]);
J1=J1(2,2,1,0,10);
J2(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],[z1]);
J2=J2(2,2,1,0,10);
J3(y1,y2,y3,y4,z1)=jacobian([g],[y1,y2,y3,y4]);
J3=J3(2,2,1,0,10);
J4(y1,y2,y3,y4,z1)=jacobian([g],[z1]);
J4=J4(2,2,1,0,10);
k1=[k11;k12;k13;k14];
m(1)=f1(2,2,1,0,10)+0.44*(J1(1,:)*k1 +J2(1,:)*l)-k11;
m(2)=f2(2,2,1,0,10)+0.44*(J1(2,:)*k1 +J2(2,:)*l)-k12;
m(3)=f3(2,2,1,0,10)+0.44*(J1(3,:)*k1 +J2(3,:)*l)-k13;
m(4)=f4(2,2,1,0,10)+0.44*(J1(4,:)*k1 +J2(4,:)*l)-k14;
m(5)=g(2,2,1,0,10)+0.44*(J3*k1 +J4(1,:)*l);
end
x0=[1,1,1,1,1];
fsolve(@F,x0)
Still nothing seems to get this working, can anyone help me out?
Thanks in advance.
4 件のコメント
Star Strider
2019 年 4 月 7 日
It’s difficult to understand what you‘re doing.
However, you need to avoid using symbolic variables in the function to use as your function argument to fsolve. Use the matlabFunction function to create a numeric function fsolve can use.
採用された回答
Stephan
2019 年 4 月 7 日
Hi,
this runs - not sure if it is really efficient, but it works:
x0=[1,1,1,1,1];
fsolve(@F,x0)
function m=F(x)
syms y1 y2 y3 y4 z1 k11 k12 k13 k14 l11
h=1/1000;
f1(y1,y2,y3,y4,z1)=(-(z1^3)/(y3^2))*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10))-y4;
f2(y1,y2,y3,y4,z1)=1/10*z1-y4;
f3(y1,y2,y3,y4,z1)=(z1^3)*(3*(y2-y1+y3^(-1)-z1/10)^2+(1/5)*(y2-y1+y3^(-1)-(z1)/10));
f4(y1,y2,y3,y4,z1)=y1-y3^(-1);
g(y1,y2,y3,y4,z1)=(y1-y3^(-1))^2+y4^2-1/10*z1;
J1(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],[y1,y2,y3,y4]);
J1=double(J1(2,2,1,0,10));
J2(y1,y2,y3,y4,z1)=jacobian([f1,f2,f3,f4],z1);
J2=double(J2(2,2,1,0,10));
J3(y1,y2,y3,y4,z1)=jacobian(g,[y1,y2,y3,y4]);
J3=double(J3(2,2,1,0,10));
J4(y1,y2,y3,y4,z1)=jacobian(g,z1);
J4=double(J4(2,2,1,0,10));
k11=x(1);
k12=x(2);
k13=x(3);
k14=x(4);
l11=x(5);
k1=[k11;k12;k13;k14];
m(1)=double(h*(f1(2,2,1,0,10)+0.44*(J1(1,:)*k1 +J2(1,:)*l11))-k11);
m(2)=double(h*(f2(2,2,1,0,10)+0.44*(J1(2,:)*k1 +J2(2,:)*l11))-k12);
m(3)=double(h*(f3(2,2,1,0,10)+0.44*(J1(3,:)*k1 +J2(3,:)*l11))-k13);
m(4)=double(h*(f4(2,2,1,0,10)+0.44*(J1(4,:)*k1 +J2(4,:)*l11))-k14);
m(5)=double(g(2,2,1,0,10)+0.44*(J3*k1 +J4(1,:)*l11));
end
Best regards
Stephan
2 件のコメント
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!