SVM、特徴ベクトル 

15 ビュー (過去 30 日間)
Yoshihiko Kuwabara
Yoshihiko Kuwabara 2019 年 2 月 22 日
回答済み: Kenta 2019 年 2 月 22 日
バイナリ分類のサポートベクターマシンの学習データ(特徴ベクトル)についてお尋ねします。
ドキュメンテーションでは2次元(平面)でのfitcsvmやpredictの使い方が解説されています。
これを3次元や4次元の特徴ベクトルに拡張するためには、fitcsvmのベクトルXを3列(4列)にすればよいのでしょうか?
また,この場合の分離空間の表示の例がありましたら御教示ください。

採用された回答

Kenta
Kenta 2019 年 2 月 22 日
したのコードにあるように、3列にすればできます。
分離平面の例としては、下のようなものがありました。一度試してみてください。
load fisheriris
X = meas(:,1:3);
y = ones(size(X,1),1);
SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...
'OutlierFraction',0.05);

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox についてさらに検索

製品


リリース

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!