Integrate with Simpson's Rule

2 ビュー (過去 30 日間)
Danny Helwegen
Danny Helwegen 2019 年 1 月 13 日
編集済み: David Goodmanson 2019 年 1 月 14 日
Hi i have, probably an easy, problem. I made a function (see the outcome below) and i need to integrate the outcome, but since the interval is small the subscript indices aren't integers. This is the problem:
f =
0.0028 0.1333 0.2667 0.4000 0.5333 0.6667 0.8000 0.9333 1.0667 1.1972
So then i use the Simpson Rule:
%interval is [0,1.2]
a = 0; b = 1.2; n =10; h = (b-a)/n
xi=a:h:b
I = h/3*(f(xi(1))+2*sum(f(xi(3:2:end-2)))+4*sum(f(xi(2:2:end)))+f(xi(end)));
But i get the error: Subscript indices must either be real positive integers or logicals.
How can I solve this?

採用された回答

Matt J
Matt J 2019 年 1 月 14 日
編集済み: Matt J 2019 年 1 月 14 日
It doesn't look like you xi should be involved, since you already have the samples of f
I = h/3*(f((1))+2*sum(f((3:2:end-2)))+4*sum(f((2:2:end)))+f((end)));
  1 件のコメント
David Goodmanson
David Goodmanson 2019 年 1 月 14 日
編集済み: David Goodmanson 2019 年 1 月 14 日
Addressing f_i directly (assuming the x_i are equally spaced) is the right method, but the problem is that f has an even number of points. So the end point f(10) gets a weight of 5, not 1.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by