# I am solving 20 nonlinear equation using fsolve to find 20 variables' value. But i previously know one of variable's value. That variable is x(17) in eqn F(17). x(17)=1200. Based on this fixed variable i want to find remaining variables' value.

4 ビュー (過去 30 日間)
chirag rohit 2019 年 1 月 1 日

function F = root16d(x)
Qs_ref=0;
Pw_ref=0.322;
F(1) = -0.5*((x(1)*x(2))-(x(3)*x(4)))-Qs_ref; %Qr=0.5*((x(5)*x(8))-(x(7)*x(6))
F(2) = 0.5*((x(1)*x(4))+(x(3)*x(2)))+0.5*((x(5)*x(6))+(x(7)*x(8)))+Pw_ref;
%% Algebric Equation
F(3) = 0.5*((x(1)*x(9))+(x(3)*x(10)))+0.5*((x(1)*x(4))+(x(3)*x(2)))-0.5*((x(11)*x(15))+(x(12)*x(16)));
F(4) = 0.5*((x(1)*x(2))-(x(3)*x(4)))+0.5*((x(1)*x(10))-(x(3)*x(9)))+0.5*((x(11)*x(16))-(x(12)*x(15)));
%% SS of Tr line
delta=0.1049;
Rl=0.02; we=2*pi*60;
Xl=0.5; wb=2*pi*60;
Xc=0.75*0.5;
EB=1;
Ebq=EB*cos(delta);
Ebd=EB*sin(delta);
%
F(5) = -(Rl*wb/Xl)*x(9)-we*x(10)-(wb/Xl)*x(13)+(wb/Xl)*(x(1)-Ebq);
F(6) = we*x(9)-(Rl*wb/Xl)*(x(10))-(wb/Xl)*x(14)+(wb/Xl)*(x(3)-Ebd);
F(7) = (wb*x(9)*Xc)-(we*x(13));
F(8) = (wb*x(10)*Xc)+(we*x(13));
%% two aglebric equation
Xtg=0.3;
F(13)= x(1)-x(11)+(Xtg*x(16));
F(14)= x(3)-x(12)-(Xtg*x(15));
F(15)= x(15)-x(4)-x(9);
F(16)= x(16)-x(2)-x(10);
%% Power flow equation for DC capacitor placed between GSC and RSC
C=50*14000e-6;%C=1;
F(17)= (100e6*((0.5*(x(5)*x(6)+x(7)*x(8)))+(0.5*(x(11)*x(15)+x(12)*x(16))))/(-C*1200));%100e6**x(17)
%% State Space model of Generator Turbine shaft model
Dt=0; Ht=4.29;
Dtg=1.5; Hg=0.9; Ktg=0.15;
Xm=3.95279; Tw=0.322/(0.75);
Wbase=2*pi*60; Te=0.5*Xm*(((x(4)+x(6))*x(8))-((x(2)+x(8))*x(6)));
F(18)= ((-Dt-Dtg)/(2*Ht))*x(18)+((Dtg/(2*Ht))*x(19))-(x(20)/(2*Ht))+(Tw/(2*Ht));
F(19)= ((Dtg/(2*Hg))*x(18))+((-Dt-Dtg)/(2*Hg))*x(19)+(x(20)/(2*Hg))-(Te/(2*Hg));
F(20)=(Ktg*Wbase)*x(18)-(Ktg*Wbase)*x(19);
%% State Space model of DFIG
Rs = 0.00488; Wb= 2*pi*60%2*pi*60;
Rr = 0.00549; We= 2*pi*60;%2*pi*60;
Xls = 0.09231; Wr= 2*pi*60*x(19);%2*pi*60*x(19)
Xlr = 0.09955;
Xm = 3.95279;
Xss = Xls+Xm; Xrr = Xlr+Xm;
F(9)=x(2)*((Xm^2*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (We*(Xlr + Xm)*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) - x(8)*((We*Xm*(Xlr + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Xm*(Xlr + Xm)*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) + (Wb*x(1)*(Xlr + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Wb*Xm*x(5))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Rs*Wb*x(4)*(Xlr + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) + (Rr*Wb*Xm*x(6))/(Xlr*Xls + Xlr*Xm + Xls*Xm)
F(10)= x(6)*((We*Xm*(Xlr + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Xm*(Xlr + Xm)*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) - x(4)*((Xm^2*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (We*(Xlr + Xm)*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) + (Wb*x(3)*(Xlr + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Wb*Xm*x(7))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Rs*Wb*x(2)*(Xlr + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) + (Rr*Wb*Xm*x(8))/(Xlr*Xls + Xlr*Xm + Xls*Xm)
F(11)=x(2)*((We*Xm*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Xm*(Xls + Xm)*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) + x(8)*((We*Xm^2)/(Xlr*Xls + Xlr*Xm + Xls*Xm) - ((Xlr + Xm)*(Xls + Xm)*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) + (Wb*x(5)*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Wb*Xm*x(1))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Rr*Wb*x(6)*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) + (Rs*Wb*Xm*x(4))/(Xlr*Xls + Xlr*Xm + Xls*Xm)
F(12)=(Wb*x(7)*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - x(6)*((We*Xm^2)/(Xlr*Xls + Xlr*Xm + Xls*Xm) - ((Xlr + Xm)*(Xls + Xm)*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) - x(4)*((We*Xm*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Xm*(Xls + Xm)*(We - Wr))/(Xlr*Xls + Xlr*Xm + Xls*Xm)) - (Wb*Xm*x(3))/(Xlr*Xls + Xlr*Xm + Xls*Xm) - (Rr*Wb*x(8)*(Xls + Xm))/(Xlr*Xls + Xlr*Xm + Xls*Xm) + (Rs*Wb*Xm*x(2))/(Xlr*Xls + Xlr*Xm + Xls*Xm)
##### 1 件のコメント表示非表示 なし
Walter Roberson 2019 年 1 月 2 日
Please do not close questions that have an Answer.
I spent a number of hours investigating this for you, and it is frustrating to have my work vanish.

サインインしてコメントする。

### 採用された回答

Walter Roberson 2019 年 1 月 1 日
x(17) does not appear in your function, so setting a particular value for it does not make any difference.
What does make a difference is that you have 20 equations in 19 variables (since x(17) is unused). That is either going to have no solutions or an infinite number of solutions. My tests suggest that this particular set of equations has no consistent solutions.
##### 7 件のコメント表示非表示 6 件の古いコメント
chirag rohit 2019 年 1 月 2 日
yes it is true.. Thank you sir..

サインインしてコメントする。

### その他の回答 (1 件)

Alex Sha 2020 年 2 月 28 日
The equation F(17) seems to be meanless:
F(17)= (100e6*((0.5*(x(5)*x(6)+x(7)*x(8)))+(0.5*(x(11)*x(15)+x(12)*x(16))))/(-C*x(17)))
equal to:
(100e6*((0.5*(x(5)*x(6)+x(7)*x(8)))+(0.5*(x(11)*x(15)+x(12)*x(16))))/(-C*x(17)))=0
equal to:
(100e6*((0.5*(x(5)*x(6)+x(7)*x(8)))+(0.5*(x(11)*x(15)+x(12)*x(16))))=0
equal to:
(0.5*(x(5)*x(6)+x(7)*x(8)))+(0.5*(x(11)*x(15)+x(12)*x(16)))=0
equal to:
x(5)*x(6)+x(7)*x(8)+x(11)*x(15)+x(12)*x(16)=0
so x(17) actually do nothing, it leads to 19 variables but 20 equations, and there is no idea solution.

サインインしてコメントする。

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by