univariate time series prediction with artificial neural network
1 回表示 (過去 30 日間)
古いコメントを表示
Osman Yakubu
2018 年 12 月 26 日
コメント済み: Parvathy ravindranath
2020 年 12 月 25 日
I am new to MATLAB and time series and need help. I have a two column data of electricity consumption (Date, Consumption in kWd). I need a MATLAB code or procedure to enable me predict consumptions. I have 154 days of data and I want to prediction each consumption and plot it on a graph (actual, predicted) and calculate the root mean squared error. Thanks.
3 件のコメント
Kevin Chng
2019 年 1 月 4 日
編集済み: madhan ravi
2019 年 1 月 4 日
Sorry for my late reply,
(Actual - Predicted) % Errors
(Actual - Predicted).^2 % Squared Error
mean((Actual - Predicted).^2) % Mean Squared Error
RMSE = sqrt(mean((Actual - Predicted).^2)); % Root Mean Squared Error
採用された回答
Kevin Chng
2019 年 1 月 4 日
refer to the link : https://www.mathworks.com/help/deeplearning/ref/narnet.html. Replace the dataset with your dataset.
For Calculating RMSE,
RMSE = sqrt(mean((Actual - Predicted).^2));
1 件のコメント
Parvathy ravindranath
2020 年 12 月 25 日
Can any one help me solve timeforcasting using deep learning in OCTAVE
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!