Speeding up solution to system of ODES

3 ビュー (過去 30 日間)
Riaz Patel
Riaz Patel 2018 年 12 月 17 日
コメント済み: Torsten 2018 年 12 月 19 日
Hi all,
function [y] = H2HWCF(u,S0,T,tau,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr)
cf = @(t) (1/(4*k))*sigma^2*(1-exp(-k*t));
d = (4*k*vb)/(sigma^2);
lambdaf = @(t) (4*k*v0*exp(-k*t))./(sigma^2*(1-exp(-k*t)));
lambdaC = @(t) sqrt(cf(t).*(lambdaf(t)-1) + cf(t)*d + (cf(t)*d)./(2*(d+lambdaf(t))));
D1 = @(u) sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = @(u) (k-sigma*pxv*1i*u - D1(u))./(k-sigma*pxv*1i*u + D1(u));
B = @(u,tau) 1i*u;
C = @(u,tau) (1i*u-1)*(1/lambda)*(1-exp(-lambda*tau));
D = @(u,tau) ((1 -exp(-D1(u)*tau))./(sigma^2*(1-g(u).*exp(-D1(u)*tau)))).*(k-sigma*pxv*1i*u-D1(u));
%ODE's that are solved numerically
muxi = @(t) (1/(2*sqrt(2)))*(gamma(0.5*(1+d))/sqrt(cf(t)))*...
(hypergeom(-0.5,0.5*d,-0.5*lambdaf(t))*(1/gamma(0.5*d))*sigma^2*exp(-k*t)*0.5 + ...
hypergeom(0.5,1+0.5*d,-0.5*lambdaf(t))*(1/gamma(1+0.5*d))*((v0*k)/(1-exp(k*t))));
phixi = @(t) sqrt(k*(vb-v0)*exp(-k*t) - 2*lambdaC(t)*muxi(t));
EAODE = @(tau,y) [pxr*eta*B(u,tau)*C(u,tau) + phixi(T-tau)*pxv*B(u,tau)*y(1) + sigma*phixi(T-tau)*D(u,tau)*y(1);
k*vb*D(u,tau) + lambda*theta*C(u,tau) + muxi(T-tau)*y(1)+eta^2*0.5*C(u,tau)^2 + (phixi(T-tau))^2*0.5*y(1)^2];
[tausol, ysol] = ode23(EAODE,[0 T],[0 0]);
E = ysol(end,1);
A = ysol(end,2);
y = exp(A+B(u,tau)*log(S0)+C(u,tau)*r0+D(u,tau)*v0 + E*sqrt(v0));
end
In this function, i have closed form solutions for B,C,D. this is not possible for E and A. So these are solved as a system of ODEs. I am solving the ODES from [0,T] with initial conditions at t = 0. I only need the values for E and A and time T though.
The problem im having is that i have to take this function and integrate it. Im using trapz to do my integration. I have to obviously evulate this function many times in order to get an accurate approximation for the integral. This is taking too long because of the ODE's that need to be solved. Is there anyway for me to speed up the run time?
Thanks!
  4 件のコメント
madhan ravi
madhan ravi 2018 年 12 月 17 日
編集済み: madhan ravi 2018 年 12 月 17 日
B(u,0)=iu initial condition?
Riaz Patel
Riaz Patel 2018 年 12 月 17 日
Yes. why?

サインインしてコメントする。

採用された回答

Torsten
Torsten 2018 年 12 月 18 日
編集済み: Torsten 2018 年 12 月 18 日
function main
%Parameters
%Heston Parameters
S0 = 100;
K = 100;
T = 1;
k = 2.5;
sigma = 0.5;
v0 = 0.06;
vb = 0.06;
%Hull-White parameters
lambda = 0.05;
r0 = 0.07;
theta = 0.07;
eta = 0.01;
%correlations
pxv = - 0.3;
pxr = 0.2;
pvr = 0;
%MC parameters
N = 200;
dt = T/N;
t = (0:dt:T);
n = 100000;
alpha = 0.75;
vmax = 250;
H2HWCFtemp = @(u) H2HWCF(u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr);
psi = @(v,y) (H2HWCFtemp(v-(alpha+1)*1i))./(alpha^2+alpha-v.^2+1i*(2*alpha+1)*v);
% Integrate psi from v=0 to v=vmax
[V,PSI]=ode15s(psi,[0 vmax],0);
% Display integral_{v=0}^{v=vmax} psi(v) dv
V(end,1)
end
function y = H2HWCF(u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr)
[tausol, ysol] = ode15s(@(tau,y)EAODE(tau,y,u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr),[0 T],[0 0]);
E = ysol(end,1);
A = ysol(end,2);
D1 = sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = (k-sigma*pxv*1i*u - D1)./(k-sigma*pxv*1i*u + D1);
B = 1i:u;
C = (1i*u-1)*(1/lambda)*(1-exp(-lambda*T));
D = ((1 -exp(-D1*T))./(sigma^2*(1-g.*exp(-D1*T)))).*(k-sigma*pxv*1i*u-D1);
y = exp(A+B*log(S0)+C*r0+D*v0 + E*sqrt(v0));
end
function dy = EAODE(tau,y,u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr)
cf = (1/(4*k))*sigma^2*(1-exp(-k*(T-tau)));
d = (4*k*vb)/(sigma^2);
lambdaf = (4*k*v0*exp(-k*(T-tau)))./(sigma^2*(1-exp(-k*(T-tau))));
lambdaC = sqrt(cf.*(lambdaf-1) + cf*d + (cf*d)./(2*(d+lambdaf)));
D1 = sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = (k-sigma*pxv*1i*u - D1)./(k-sigma*pxv*1i*u + D1);
B = 1i*u;
C = (1i*u-1)*(1/lambda)*(1-exp(-lambda*tau));
D = ((1 -exp(-D1*tau))./(sigma^2*(1-g.*exp(-D1*tau)))).*(k-sigma*pxv*1i*u-D1);
muxi = (1/(2*sqrt(2)))*(gamma(0.5*(1+d))/sqrt(cf))*...
(hypergeom(-0.5,0.5*d,-0.5*lambdaf)*(1/gamma(0.5*d))*sigma^2*exp(-k*(T-tau))*0.5 + ...
hypergeom(0.5,1+0.5*d,-0.5*lambdaf)*(1/gamma(1+0.5*d))*((v0*k)/(1-exp(k*(T-tau)))));
phixi = sqrt(k*(vb-v0)*exp(-k*(T-tau)) - 2*lambdaC*muxi);
dy = zeros(2,1);
dy(1) = pxr*eta*B*C + phixi*pxv*B*y(1) + sigma*phixi*D*y(1);
dy(2) = k*vb*D + lambda*theta*C + muxi*y(1)+eta^2*0.5*C^2 + phixi^2*0.5*y(1)^2;
end
  6 件のコメント
Riaz Patel
Riaz Patel 2018 年 12 月 19 日
Just an update, i get these sorts of errors when i use ode15s.
Warning: Failure at t=1.000000e+00. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (1.776357e-15) at time t.
> In ode15s (line 668)
I also get slightly different answers with the two solvers. how do i determine which one is more accurate for this specific system of odes?
Torsten
Torsten 2018 年 12 月 19 日
You will have to play with the solvers to see which one is the most appropriate for your problem. Usually, ODE15S is most accurate, but slower for non-stiff problems.
I suggested to circumvent application of "trapz" by using ODE15S also to integrate psi (or your "fintegrand" from above). This may save computation time because the ODE solver chooses its step in "v" automatically according to the tolerance you have chosen. At the moment, you "blindly" use 2500 function evaluation for psi. I leave it to you which method you prefer to implement.
Best wishes
Torsten.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by