Projecting a point into a line

10 ビュー (過去 30 日間)
Donigo Fernando Sinaga
Donigo Fernando Sinaga 2018 年 12 月 10 日
How can I project a point (let's say (50,0)) to a line (y = 5.6x - 7.1)?
Thank you.
  3 件のコメント
Donigo Fernando Sinaga
Donigo Fernando Sinaga 2018 年 12 月 11 日
How can I define a function y = 9.1*x -135.3396 in 'vector' variable? And how can I plot like that?
Adam Danz
Adam Danz 2018 年 12 月 11 日
If you look at the example in the link Mark provided, you'll see that the vector variable is actually a 2x2 matrix of the endpoint coordinates of the line.
Since you already have the slope, intercept, and (x,y) coordinates of another point, I suggest using the method proposed in the answer section.

サインインしてコメントする。

採用された回答

Adam Danz
Adam Danz 2018 年 12 月 11 日
編集済み: Adam Danz 2018 年 12 月 11 日
You need the equation of both perpendicular lines. You already have the equation for the first line. In your line y = 5.6x - 7.1 the slope is 5.6.
The slope of the second line will just be the perpendicular slope of your first line.
m = 5.6;
b = -7.1;
x = 50;
y = 0;
perpSlope = -1/m;
To get the y intercept of the 2nd line you just need to solve for y=mx+b using your point (x,y)
yInt = -perpSlope * x + y;
Now you've got the two linear equations and you need to find out where they intersect. Here we find the x coordinate of the intersection. m and b are the slope and intercept of line 1, perSlope and yInt are the slope and intercept of line 2.
xIntersection = (yInt - b) / (m - perpSlope);
To get the y coordinate of the intersection, we just plug the x coordinate into one of the equations.
yIntersection = perpSlope * xIntersection + yInt;
Now we can plot it out to make sure it looks rights
figure
plot(x,y, 'rx')
hold on
plot(xIntersection, yIntersection, 'ro')
refline(m, b)
refline(perpSlope, yInt)
axis equal
181211 152914-Figure 1.jpg
  1 件のコメント
Donigo Fernando Sinaga
Donigo Fernando Sinaga 2018 年 12 月 19 日
Thank you very much, your answer really helps me. Thank you!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by