Solving the Ordinary Differential Equation

4 ビュー (過去 30 日間)
Yeahh
Yeahh 2018 年 11 月 15 日
編集済み: madhan ravi 2018 年 11 月 15 日
I am not sure how to solve these systems of differential equation. However, the final graph representation of the result is two exponential curves for and in respect to time.
Also, with =, the variable ks and BP are all constant.

採用された回答

madhan ravi
madhan ravi 2018 年 11 月 15 日
編集済み: madhan ravi 2018 年 11 月 15 日
EDITED
use dsolve()
or
Alternate method using ode45:
Screen Shot 2018-11-15 at 11.17.17 AM.png
tspan=[0 1];
y0=[0;0];
[t,x]=ode45(@myod,tspan,y0)
plot(t,x)
lgd=legend('Cp(t)','Cr(t)')
lgd.FontSize=20
function dxdt=myod(t,x)
tau=2;
ks=3;
BP=6;
k1=5;
k2=7;
x(1)=exp(-t)/tau; %x(1)->Cp
dxdt=zeros(2,1);
dxdt(1)=k1*x(1)-(k2/(1+BP))*x(2); %x(2)->Cr
dxdt(2)=k1*x(1)-k2*x(2);
end
  9 件のコメント
Yeahh
Yeahh 2018 年 11 月 15 日
編集済み: madhan ravi 2018 年 11 月 15 日
Thank you so much, I have one last question.
What doest this line means?
dxdt=zeros(2,1);
madhan ravi
madhan ravi 2018 年 11 月 15 日
編集済み: madhan ravi 2018 年 11 月 15 日
Anytime :), It is called preallocation(please google it) imagine as a container to store something. Make sure to accept for the answer if it was helpful.

サインインしてコメントする。

その他の回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by