
Solving the Ordinary Differential Equation
4 ビュー (過去 30 日間)
古いコメントを表示
I am not sure how to solve these systems of differential equation. However, the final graph representation of the result is two exponential curves for
and
in respect to time.
Also, with
=
, the variable ks and BP are all constant.
0 件のコメント
採用された回答
madhan ravi
2018 年 11 月 15 日
編集済み: madhan ravi
2018 年 11 月 15 日
EDITED
use dsolve()
or
Alternate method using ode45:

tspan=[0 1];
y0=[0;0];
[t,x]=ode45(@myod,tspan,y0)
plot(t,x)
lgd=legend('Cp(t)','Cr(t)')
lgd.FontSize=20
function dxdt=myod(t,x)
tau=2;
ks=3;
BP=6;
k1=5;
k2=7;
x(1)=exp(-t)/tau; %x(1)->Cp
dxdt=zeros(2,1);
dxdt(1)=k1*x(1)-(k2/(1+BP))*x(2); %x(2)->Cr
dxdt(2)=k1*x(1)-k2*x(2);
end
9 件のコメント
madhan ravi
2018 年 11 月 15 日
編集済み: madhan ravi
2018 年 11 月 15 日
Anytime :), It is called preallocation(please google it) imagine as a container to store something. Make sure to accept for the answer if it was helpful.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!