Is there any code or command for doubling a point ?

9 ビュー (過去 30 日間)
Maria Hameed
Maria Hameed 2018 年 10 月 23 日
コメント済み: Ammy 2022 年 2 月 21 日
I have an elliptic curve y*2=x*3+148x+225 mod 5003 I took G=(1355,2421) as the shared key I want to find points as (G,2G,3G,4G,......5003G)
  2 件のコメント
madhan ravi
madhan ravi 2018 年 10 月 23 日
can you give a clear example?
Maria Hameed
Maria Hameed 2018 年 10 月 23 日
input:(G,2G,3G,4G,....5003G) output:[(1355,2421),(533,2804),(4896,1633),(2822,532),.....,(1329,2633)]

サインインしてコメントする。

採用された回答

Bruno Luong
Bruno Luong 2018 年 10 月 24 日
% EL parameters
a = 148
b = 225
% Group Z/pZ parameter
p = 5003
% Point
G = [1355,2421];
% Compute G2 = 2*G
x = G(1);
y = G(2);
d = mod(2*y,p);
[~,invd,~] = gcd(d,p);
n = mod(3*x*x + a,p);
lambda = mod(n*invd,p);
x2 = mod(lambda*lambda - 2*x,p);
y2 = mod(lambda*(x-x2)-y,p);
G2 = [x2 y2]
G2 =
533 2804
  6 件のコメント
Maria Hameed
Maria Hameed 2018 年 10 月 26 日
% EL parameters a = 148 b = 225 % Group Z/pZ parameter p = 5003 % Point for i=1:256 Gi = [1355,2421]; % Compute G(i+1) = 2*Gi xi = Gi(1); yi = Gi(2); d = mod(2*yi,p); [~,invd,~] = gcd(d,p); n = mod(3*xi*xi + a,p); lambda = mod(n*invd,p); x2 = mod(lambda*lambda - 2*xi,p); y2 = mod(lambda*(xi-x(i+1))-y,p); G(i+1) = [x(i+1) y(i+1)]
% Compute G(i+2) = G(i+1)+Gi
d1 = mod((x(i+1)-xi),p); [~,invd,~] = gcd(d1,p); n1 = mod((y(i+1)-yi),p); lambda = mod(n1*invd,p); x(i+2) = mod(lambda*lambda - x-x(i+1),p); y(i+2) = mod(lambda*(x-x(i+2))-y,p); G(i+2) = [x(i+2) y(i+2)] end for sir how can I combine theses codes for point doubling ?
Bruno Luong
Bruno Luong 2018 年 10 月 26 日
Your code is incomplete, isn't it? I post the answer below.

サインインしてコメントする。

その他の回答 (4 件)

Bruno Luong
Bruno Luong 2018 年 10 月 26 日
EL = struct('a', 148, 'b', 225, 'p', 5003);
% Point
G = [1355,2421];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
invd = itab(mod(d,p)); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
yr = lambda*(xp-xr) - yp;
R = mod([xr, yr],p);
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
  11 件のコメント
Bruno Luong
Bruno Luong 2022 年 2 月 21 日
As stated in my code, for illustration only, there is no careful check for overflow of calculation. This code is more robust but still not bulet-proof
EL = struct('a', 0, 'b', 2, 'p', 957221);
% Point
G = [762404,61090];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
d = mod(d,p);
n = mod(n,p);
invd = itab(d); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
xr = mod(xr,p);
yr = lambda*(xp-xr) - yp;
yr = mod(yr,p);
R = [xr, yr];
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
Ammy
Ammy 2022 年 2 月 21 日
Thank you very much@Bruno Luong.

サインインしてコメントする。


KSSV
KSSV 2018 年 10 月 23 日
G=[1355,2421] ;
P = 1:1:5003 ;
Q = P'.*G ;
  8 件のコメント
Walter Roberson
Walter Roberson 2018 年 10 月 24 日
Should the definition of s really divide by 2 and multiply the results by y, or should it be dividing by (2*y)?
Maria Hameed
Maria Hameed 2018 年 10 月 24 日
it should divide (2*y) and this is actually as s=[(3*x^2+a)modp]*[(2*y)^-1 mod p] and inverse of (2*y) should be found by extended euclidean algo

サインインしてコメントする。


madhan ravi
madhan ravi 2018 年 10 月 23 日
double(points) %like this?
  1 件のコメント
Maria Hameed
Maria Hameed 2018 年 10 月 24 日
yup note that this point doubling is of elliptic curve not simple point multiplication

サインインしてコメントする。


Bruno Luong
Bruno Luong 2018 年 10 月 23 日
I reiterate my answer previously, you need first to program the "+" operator for EL, then doubling point 2*Q is simply Q "+" Q.
Formula for addition in EC group in the section Elliptic Curves over Zp of this document

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by