Determine decay order of a plot

12 ビュー (過去 30 日間)
Maaz Surve
Maaz Surve 2018 年 10 月 20 日
回答済み: Image Analyst 2018 年 10 月 21 日
Is there any way of determining the exponential decay order of a plot in MATLAB or showing the equation of the graph like excel does?

回答 (2 件)

madhan ravi
madhan ravi 2018 年 10 月 21 日
To view the equation read https://www.mathworks.com/help/matlab/data_analysis/interactive-fitting.html see 4th sentence under Predict the Census Data with a Cubic Polynomial Fit

Image Analyst
Image Analyst 2018 年 10 月 21 日
Yes. See this demo where you can find the parameters with fitnlm():
% Uses fitnlm() to fit a non-linear model (an exponential decay curve) through noisy data.
% Requires the Statistics and Machine Learning Toolbox, which is where fitnlm() is contained.
% Initialization steps.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
% Create the X coordinates from 0 to 20 every 0.5 units.
X = 0 : 0.5 : 20;
% Define function that the X values obey.
a = 10 % Arbitrary sample values I picked.
b = 0.4
Y = a + exp(-X * b); % Get a vector. No noise in this Y yet.
% Add noise to Y.
Y = Y + 0.05 * randn(1, length(Y));
% Now we have noisy training data that we can send to fitnlm().
% Plot the noisy initial data.
plot(X, Y, 'b*', 'LineWidth', 2, 'MarkerSize', 15);
grid on;
% Convert X and Y into a table, which is the form fitnlm() likes the input data to be in.
tbl = table(X', Y');
% Define the model as Y = a + exp(-b*x)
% Note how this "x" of modelfun is related to big X and big Y.
% x((:, 1) is actually X and x(:, 2) is actually Y - the first and second columns of the table.
modelfun = @(b,x) b(1) + b(2) * exp(-b(3)*x(:, 1));
beta0 = [10, .4, 1]; % Guess values to start with. Just make your best guess.
% Now the next line is where the actual model computation is done.
mdl = fitnlm(tbl, modelfun, beta0);
% Now the model creation is done and the coefficients have been determined.
% YAY!!!!
% Extract the coefficient values from the the model object.
% The actual coefficients are in the "Estimate" column of the "Coefficients" table that's part of the mode.
coefficients = mdl.Coefficients{:, 'Estimate'}
% Create smoothed/regressed data using the model:
yFitted = coefficients(1) + coefficients(2) * exp(-coefficients(3)*X);
% Now we're done and we can plot the smooth model as a red line going through the noisy blue markers.
hold on;
plot(X, yFitted, 'r-', 'LineWidth', 2);
grid on;
title('Exponential Regression with fitnlm()', 'FontSize', fontSize);
xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
legendHandle = legend('Noisy Y', 'Fitted Y', 'Location', 'north');
legendHandle.FontSize = 25;
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
% Get rid of tool bar and pulldown menus that are along top of figure.
% set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')

カテゴリ

Help Center および File ExchangeLinear and Nonlinear Regression についてさらに検索

タグ

製品


リリース

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by